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Abstract 

Fabrication of silicon carbide (SiC) semiconductor devices are of interest for aerospace 

applications because of their high-temperature tolerance. Growth of an insulating Si02 

layer on SiC by oxidation is a poorly understood process, and sometimes produces interface 

defects that degrade device performance. Accurate theoretical models of surface chemistry, 

using quantum mechanics (QM), do not exist because of the huge computational cost of 

solving Schrödinger's equation for a molecular cluster large enough to represent a surface. 

Molecular mechanics (MM), which describes a molecule as a collection of atoms interacting 

through classical potentials, is a fast computational method, good at predicting molecular 

structure, but cannot accurately model chemical reactions. 

A new hybrid QM/MM computational method for surface chemistry was developed 

and applied to silicon and SiC surfaces. The addition of MM steric constraints was shown to 

have a large effect on the energetics of O atom adsorption on SiC. Adsorption of O atoms 

on Si-terminated SiC(lll) favors above surface sites, in contrast to Si(lll), but favors 

subsurface adsorption sites on C-terminated SiC(lll). This difference, and the energetics 

of C atom etching via C02 desorption, can explain the observed poor performance of SiC 

devices in which insulating layers were grown on C-terminated surfaces. 
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HYBRID QUANTUM AND MOLECULAR MECHANICS 

EMBEDDED CLUSTER MODELS 

FOR CHEMISTRY ON 

SILICON AND SILICON CARBIDE SURFACES 

/.   Methods for modeling chemistry on surfaces 

1.1    Motivation 

Chemical reactions on surfaces play a key role in many processes of technological 

importance, for example, surface catalyzed reactions such as NO and CO conversion in 

automobile catalytic converters, semiconductor processing and fabrication, and surface 

corrosion and rust. Fabrication of silicon carbide (SiC) Metal Oxide Semiconductor Field 

Effect Transistor (MOSFET) devices are of high interest to the Air Force because their high 

operating temperature makes them appealing for aerospace applications [1]. (SiC devices 

could operate uncooled, unlike silicon devices which must be cooled.) One of the integral 

steps in the fabrication of a SiC MOSFET device is the deposition of an insulating oxide 

layer (Si02 in both silicon and SiC) on the semiconductor material. The oxide layer is 

grown by exposing the SiC surface to an oxygen plasma, in which the reactive O atoms are 

thought to be the dominant species involved in oxide layer growth. Significant differences 

in SiC MOSFET device performance have been observed if the oxide layer is grown on 

a Si or C terminated SiC surface. Based on related experience from silicon MOSFET 

fabrication [2], it is thought that O atom exposure to the C terminated surface etches the C 

atoms, creating defects at the SiC surface. Creation of surface defects causes reconstruction 

of the lattice several layers down, so the effect of these surface defects propagate on the 

order of 10Ä into the SiC. As fabrication proceeds, the SiC surface becomes the interface 

between the semiconductor and the insulator. Since much of the current in MOSFET 

devices is carried in a thin layer adjacent to this interface, the defects created during oxide 

layer deposition significantly degrade device performance. 
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The surface chemistry of SiC is poorly understood. Very little experimental charac- 

terization of oxygen chemisorbed on SiC has been performed [3], and very few theoretical 

and experimental investigations have been described in the literature. The purpose of 

this study is to provide an understanding of this problem by developing a computational 

approach that will allow the simulation of surfaces of bulk materials. 

1.2   Background 

Ab initio quantum mechanical calculations of the electronic wavefunction for molecules 

have been shown to predict energetics for chemical reactions that agree well with experi- 

ment, with a typical "chemical" accuracy of ±5^ff. Unfortunately, ab initio approaches 

cannot currently be used to model surface chemistry. Since one needs to use a molecular 

system in an ab initio approach, the surface of a real material is simulated by designing 

a large molecular cluster (model system) that matches the lattice geometry of the real 

system, and has one face that matches the surface structure of the real system. This 

molecular cluster must be large enough to provide a realistic representation of the steric 

(mechanical) and electronic environments of a bulk material. The problem with using ab 

initio calculations for modeling surface chemistry is that the minimum size for a molecular 

cluster that provides an adequate representation of the surface of a bulk material greatly 

exceeds the maximum size of a practical ab initio calculation. 

A concrete example to illustrate this problem is shown in Figure 1.1 with the molecule 

Si73C69Hio9, which is a model of a Si-terminated SiC surface in the (111) orientation 

(surface notation is defined in Section 3.7.1). This cluster has 3 unsaturated Si atoms (the 

white atoms in the top layer) which serve as reactive sites for H and O atom adsorption. 

Figure 1.2 shows a similar example, the molecule Si7oC7oH87, which is another model of 

a Si-terminated SiC surface in the (111) orientation. This cluster also has 3 unsaturated 

Si atoms in the top layer to serve as reactive sites. Both clusters contain roughly the 

same number of atoms, with similar computational cost. Note that it is still unclear which 

cluster would provide a better model of the SiC(lll) surface; this question is addressed in 

Chapter V. 
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Figure 1.1    Si73C69Hio9 cluster model of a Si-terminated SiC(lll) surface. 

Figure 1.2    Si7oC7oH87 cluster model of a Si-terminated SiC(lll) surface. 
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In an ab initio calculation, one solves for the (approximate) electronic wavefunction 

using quantum mechanics (QM). Thus, the size of the problem depends on the total number 

of electrons in the molecule. A functional expansion is used to represent the wavefunction, 

so the exact computational cost is determined by the number of basis functions used to 

represent the wavefunction. (The number of basis functions per electron is a user selected 

parameter. The more basis functions per electron, the higher the accuracy of the result.) 

Using a basis set (specific functional expansion, see Section 2.1.4 for details) that provides 

good predictions of molecular structure, Si73C69H109 contains 2640 basis functions, and 

Si7oC7oH87 contains 2554 basis functions. The largest ab initio calculation performed in 

this research contained 686 basis functions, and had a computation time of 100 hours on 32 

nodes of an IBM SP2 supercomputer. Ab initio calculations formally scale as the number 

of basis functions raised to the fourth power; for large clusters such as these, the power 

scaling is somewhere between 3 and 4. Using a scaling of 3.5, the estimated calculation 

time for a single geometry optimization calculation on these clusters is over over one year. 

As one would need to do tens of such calculations to investigate the initial oxidation of 

SiC, it is clearly impractical to use clusters of this size in ab initio modeling. 

Thus, the size of the cluster must be reduced in order to use ab initio quantum 

mechanical techniques. Figures 1.3 and 1.4 show Si and C-terminated SiC clusters that 

are computationally tractable. The Si-terminated cluster contains 416 basis functions, and 

the C-terminated cluster contains 432 basis functions. The computation time for each 

is roughly 24 hours on 32 IBM SP2 nodes, which is quite reasonable. However, since 

these clusters are so much smaller than the clusters described above, their reliability is 

questionable. Indeed, these clusters provide a very poor model of the SiC(lll) surface. 

Figure 1.6 shows this Si-terminated cluster with one O atom adsorbed to two adjacent 

Si surface atoms. (This cluster without an 0 atom adsorbed is shown in Figure 1.5 for 

comparison.) The two Si atoms have displaced roughly 0.7A from their lattice positions to 

bond with the 0 atom, and in the process have changed the positions of their neighboring 

atoms as well. The cluster has curled up because its edges are so close to the reaction 

site, which is clearly a poor model of real SiC surface where the edges would be on the 

1-4 



order of 1023 atoms away from the reaction site. Clearly, an approximate approach must 

be developed to address these limitations. 

1.3 Problem Statement 

The problems addressed in this research are the development of a hybrid QM/MM 

computational technique that will enable relatively small molecular clusters to simulate 

surfaces of bulk materials, and its application to the study of the surface chemistry of 

silicon carbide, with emphasis on the oxidation of SiC(lll) surfaces. 

1.4 Overview 

In order to simulate a bulk material with a small molecular cluster (cluster), the me- 

chanical and electronic environment of a bulk material must be accounted for. Molecular 

structure computational methods based on classical mechanics have been shown to work 

well for molecular structure. In the technique known as molecular mechanics (MM), a 

molecule is described as a collection of atoms interacting through various classical 2-body 

(bond stretch), 3-body (angle bend), and 4-body (torsion angle rotation) potentials. These 

potentials are derived from experimental data and ab initio calculations of small model 

compounds. MM calculations are appropriate for predicting molecular structure, but can- 

not predict the chemistry since MM lacks an explicit description of electronic behavior. 

However, an advantage of MM calculations is that they are much faster than corresponding 

ab initio calculations. For example, the ab initio geometry optimization of Si70C7oH87 , 

which was predicted to take one year on 32 nodes of an IBM SP2, only took 15 minutes 

on one IBM SP2 node using MM. 

A number of researchers have devised hybrid ab initio/MM (QM/MM) computa- 

tional schemes that use MM to simulate the mechanical environment of large molecules by 

embedding a small piece of the molecule modeled with QM embedded within the rest of 

the molecule modeled with MM. Maseras et al. [4] have developed an interesting method 

to merge MM and ab initio calculations, the so-called Integrated Molecular Orbital Molec- 

ular Mechanics (IMOMM). In IMOMM, forces (energy gradients) from MM are used to 

modify an ab initio geometry. However, the method used to link embedded and bulk clus- 
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Figure 1.3    Si9Ci3H25 model of a Si-terminated SiC(lll) surface, 416 basis functions. 

Figure 1.4    C9Sii3H25 model of a C-terminated SiC(lll) surface, 432 basis functions. 
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Figure 1.5    Clean Si-terminated SiC(lll) embedded cluster, xz view, ab initio optimized 
geometry. 

I  ©Adsorbed 

Figure 1.6 Ab initio optimized Si-terminated SiC(lll) EC with 0 atom adsorbed in a 
bridge site. Directions of atom displacements from lattice positions are shown 
by arrows. 
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ters in IMOMM is unsuitable for surface calculations. IMOMM was initially implemented 

using commercial computer programs, the ab initio code Gaussian92 [5] and the MM code 

MM3 [6] [4]; however, IMOMM is not yet available to the public. 

Now, one must address the problem of simulating the electronic environment of a 

bulk material in a molecular cluster. The atoms at the faces of a small cluster would be 

bonded to lattice atoms if the cluster were part of a bulk material. These boundary atoms 

in small clusters are generally bonded to H atoms instead of lattice atoms to eliminate 

unbonded electrons at the boundary, i.e., saturate the "dangling" bonds. The H atoms 

used to saturate the dangling bonds produce a mismatch in electronegativity with the 

bulk material. The electronic environment in the small cluster is different than in the 

bulk material, hence the chemical reactivity of the cluster will be different than the bulk 

material. In an attempt to modify the electronic environment of small clusters to make 

them more bulk-like, several researchers have created artificial one-electron "atoms", Hs, 

that mimic the electronic behavior of bulk silicon atoms, and used them to terminate 

small silicon clusters [7, 8]. This previous work has only explored the use of Hs under very 

limited conditions, so the generic utility of Hs for terminating silicon is not known. The 

possibility of terminating SiC clusters with similar Hs has not been previously explored. 

1.5    Approach 

A hybrid MM/ab initio technique is promising for surface calculations. In this work, 

the IMOMM approach of Maseras and Morokuma was modified for use in surface calcu- 

lations. This Modified IMOMM (MIMOMM) approach was implemented in the public 

domain ab initio quantum mechanics code GAMESS [9] (General Atomic and Molecular 

Electronic Structure System) with the molecular mechanics code MM3. The initial imple- 

mentation will use MM3 to enable direct comparisons with the original IMOMM. MM3 is 

a commercial code, so a search for a public domain MM code will also be conducted. In 

addition to a new method used to link the quantum and molecular mechanics regions of 

the hybrid system, a new type of internal coordinates, delocalized coordinates [10] was also 

implemented in GAMESS to enable the application of MIMOMM to surface (and other 

highly coupled) clusters. In addition to MIMOMM, an alternate method to merge ab initio 
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and MM calculations as described by Weiner et al. [11] was also implemented, and the two 

methods compared on cluster models of the dimerized silicon(OOl) surface. The hybrid 

methods were benchmarked against an ab initio optimized geometry of a very large silicon 

surface cluster model. For this particular system, ab initio calculations on small cluster 

models, MIMOMM calculations on a large hybrid cluster, and the ab initio calculation on 

the large silicon cluster were all found to agree well with experiment. 

1.6   Application 

The newly developed MIMOMM method was used to predict structures and energies 

for O atoms adsorbed onto Si and C-terminated SiC(lll) surfaces, which is a poorly 

understood problem that has not been well characterized. The relative energies of several 

O atom adsorptions sites on the Si-terminated SiC(lll) surface favored above surface 

sites, while a subsurface adsorption site was energetically favored for the C-terminated 

SiC(lll) surface. This difference, along with relative energetics for adsorbed O atoms 

and gas phase CO and C02 may favor etching of C-terminated SiC(lll) by O atoms, and 

favor passivation of the Si-terminated SiC(lll) surface. MIMOMM predicted structures 

and energies for O atoms adsorbed on a similar Si(lll) surface show how differences in 

lattice size can explain the observed differences between the Si and C-terminated SiC(lll) 

surfaces. 

In summary, the key element for success of a hybrid ab initio/MM model is the design 

of the hybrid model system, the ab initio optimized small cluster and the MM optimized 

large cluster in which the ab initio cluster is embedded. This is not just a matter of 

designing for computational efficiency, but more importantly, requires an understanding 

of how a bulk material affects reactivity on the surface. While the bulk effects on surface 

chemistry are known to be important, the specific influence of the bulk has not yet been 

quantified. With a MIMOMM, bulk mechanical effects can be separated by comparing 

conventional ab initio calculations on the small cluster with hybrid calculations using this 

same ab initio piece. 
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II.   An Overview of Computational Methods for Determining Molecular Properties 

A description of the methods currently used to calculate molecular properties and 

chemical behavior is presented in this chapter The reader will be directed to more detailed 

references on each technique. The goal of this chapter is to provide enough information 

to understand the limitations of each technique and the applications where each is most 

appropriate. 

2.1    Ab Initio Hartree-Fock Self Consistent Field Technique 

The Hartree-Fock Self Consistent Field (HF-SCF or simply SCF) is used to calculate 

the approximate electronic wavefunction of an atom or molecule by solving Schrödinger's 

wave equation. Solution of the Schrödinger equation for systems with more than one 

electron is very difficult, so several approximations must be made in order to find numerical 

solutions. The HFSCF procedure is at the core of every ab initio quantum chemistry code. 

To understand the accuracy and applicability of the answers these codes provide, it is 

important to understand the approximations that had to be made along the way. 

2.1.1 Born-Oppenheimer Approximation. Born and Oppenheimer originated the 

central approximation used in calculating the electronic wavefunction of molecules in 1927 

[12]. The general time-independent Schrödinger wave equation (in atomic units) for a 

collection of N electrons and M nuclei, neglecting spin and relativistic effects is [13] 

[fn + fe + Vnn + Vee + Van] *(£, f) = EV(R, f). (2.1) 

The terms in this Hamiltonian, in atomic units, are 

M 
Tn      =>•    Y, ~JM~^A        Nuclear Kinetic Energy Operator .   ,       2MA 

MA mass of nuclei A 
V^ second derivative with respect to coordinates 

of nuclei A 
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N 
J2 -fV? Electron Kinetic Energy Operator 
.■=i    2 

V? second derivative with respect to coordinates 

of electron i 

MM 
Kr.    =>•     E   E  4* Nuclear-Nuclear Potential Energy Operator 

A=1B>A   RAI 

ZJ\ charge of nuclei A 
RAB separation between nuclei A and B 

N    N 
Vee    =>•    E E ~ Electron-Electron Potential Energy Operator 

j = l i>j 
separation between electrons i and j 

N    M 
Ven    =>•    E E Electron-Nuclear Potential Energy Operator 

•      1     A       1    TiA 

ZA charge of nuclei A 
TiA separation between electron i and nuclei A 

The solution to this Partial Differential Equation (PDE) is a wavefunction in which 

nuclear and electronic motion is coupled. However, Born and Oppenheimer suggested that 

because of the great difference in the electron and nuclear masses, on the timescale of 

electronic motion the nuclei will appear nearly stationary. Thus, to an approximation, one 

can decouple the nuclear and electronic motion and express the total wavefunction as a 

product of a function of nuclear coordinates only and a function of electronic coordinates 

at a specific nuclear geometry. That is, the electronic wavefunction depends explicitly on 

the electron coordinates and parametrically on the nuclear coordinates. 

V(R;r) = <j>(R)i>(r;R) (2.2) 

where R denotes nuclear coordinates, and r denotes electron coordinates. The nuclear 

kinetic energy operator T„ only acts on nuclear coordinates, and the electronic kinetic 

energy operator Te only acts on electronic coordinates. 

Tn[<f>(R)iP(r;R)}    =    [fn<ß(R)W(r; R) + cf>(R)[tni>(r-, R)]    =    [f^(Ä)]^(f; R) + 0 

tMRWftS)]    =   [fe<f>(R)]tP&R) + <KR)[fM?lR)]    =   0 + #£)[TW>(r;A)] 
(2.3) 

2-2 



Within this approximation, Schrödinger's equation becomes 

4>(R)[fMr\ R)} + [fntimtf R) + <t>{R)^(r- R)[Vnn + Vee + Vm -E} = 0.        (2.4) 

Rearranging terms in Eq 2.4, we obtain 

<j>(R)[Te + Vee + Ve„Mf; R) + Hr; R)[f„ + tn -E] = 0. (2.5) 

Since ip(r; R) only has parametric dependence on R, we can define a separate eigenvalue 

problem for the electronic piece of the wavefunction, which is 

[t + te + Ven]i>{r; R) = ee {M} i>(f; R). (2.6) 

Replacing the appropriate terms in Eq 2.5 with the definition of the eigenvalue problem 

for the electronic part of the total wavefunction, Eq 2.6, we obtain 

^(r; R) \[fn + (Vnn + ee {a}) - E]<j>(R)] = 0. (2.7) 

The combination of Vnn + £e defines an effective potential for molecular vibrations. 

It is the potential energy for the nuclei in the field created by the electrons. In general, 

the electronic energy becomes more negative as the nuclei are moved closer together. The 

internuclear potential energy becomes more positive as the nuclei are moved closer together. 

Thus, the minimum energy configuration of a molecule is a compromise between these two 

factors. This is illustrated in the sample calculation for H2 shown in Figure 2.1. 

The Born-Oppenheimer approximation is one of the best approximations made in 

chemical physics because it is valid in a very wide range of situations. However, the product 

form of the wavefunction is still useful in those situations where the Born-Oppenheimer 

approximation breaks down. We know that any function of one variable can be expressed 

as an infinite sum of orthogonal functions, a generalized Fourier series. Similarly, a function 

of two variables can be expressed exactly as an infinite sum of products of single variable 
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Figure 2.1    H2 Molecule Total Energy as the Sum of Electronic and Nuclear Repulsion 
Components. 

functions, 

i=l j = l 

(2.8) 

The Born-Oppenheimer approximation makes the assumption that 

=    0;   z,j#l. 
(2.9) 

Approximate nuclear-electronic wavefunctions would be obtained by a finite number of 

terms. Calculations that do not use the Born-Oppenheimer approximation are excep- 

tionally challenging, and at the present time are limited to very simple systems. We 

are primarily concerned with solutions for the electronic wavefunction since the electronic 

wavefunction determines the effective potential in which the nuclei move (under the BO ap- 

proximation), thus it drives the solution for the nuclear wavefunction (molecular geometry) 

as well. 
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2.1.2 Approximate Electronic Wave]'unctions. The time-independent Schrödinger 

equation for the electronic wavefunction is 

I N        1 N     M 7   \ N    N     -.   \ 

Y,-l^ + Y,E-^)+EE^)^R) = ee{R}i,(r,R). (2.10) 
Ki=l      L i=l A=l      'iAJ        <=lj>>  ''J/ 

We see that the first two operators on the left hand side of Eq 2.10 involve coordinates 

of only one electron at a time. One could obtain an exact solution as a simple product 

of functions of individual electron coordinates if we only had to worry about these two 

operators. The third operator, describing electron-electron interactions, is more trouble- 

some because coupling pairs of electrons eliminates the separability in the problem. The 

fundamental difficulty one encounters in finding an electronic wavefunction is trying to 

solve a nonseparable PDE. 

The most common method for solving a nonseparable PDE is to represent the PDE 

on a basis of orthogonal functions, i.e., a generalized Fourier series solution. One then uses 

the PDE to determine the coefficients for each term in the series. The accuracy of the 

solution depends on the number of terms in the series (number of basis functions), with an 

exact solution requiring an infinite number of terms. As the electronic wavefunction is a 

function of 3n variables, where n is the number of electrons, the generalized Fourier series 

solution method is computationally demanding. (The solution for a multi-electron atom is 

somewhat simpler than a molecule because all the electrons are centered at the same point 

in space, facilitating the construction of an orthogonal basis [14].) Since solutions for multi- 

electron wavefunctions were originally sought before the invention of digital computers, 

compromises in the accuracy of the solution were necessary. A logical first step was to 

include just one term in the series, but apply physical insight to develop a scheme to find 

the best single-term solution for the approximate wavefunction. This is the essence of the 

Hartree Fock Self Consistent Field (HF-SCF) procedure. [15, 16]. 

The choice of the initial trial wavefunction is crucial to the success of the HF-SCF 

procedure. The postulates of quantum mechanics help guide the selection of the trial 

function. First, we know that electrons moving about in an atom or molecule are indis- 

tinguishable particles. This means that the probability density derived from an electronic 
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wavefunction must be invariant with respect to labeling of the electron coordinates. For the 

probability to be invariant, the following relationship must hold for any pair of electrons: 

*2(r1,r2,...rl,rj,...rjV) = *2 (rur2, ...rj,ri, ...rN). (2.11) 

(Note: The parametric dependence on the nuclear positions R is always implied even if it is 

not explicitly written.) For the wavefunction itself, this means that the interchange of a pair 

of electron coordinates can change the wavefunction by a factor of exp(i(f>). For electrons 

and other half-integer spin particles (fermions), <f> = w, so the electronic wavefunction 

is antisymmetric, changes sign, with respect to interchange of electron labels. This is 

a statement of the Pauli exclusion principle as applied to electronic wavefunctions. In 

order to satisfy the Pauli exclusion principle, we need to seek antisymmetric approximate 

solutions for the electronic wavefunction. 

There are a number of ways to construct antisymmetric approximate wavefunctions; 

however, the determinant form of the wavefunction originated by Slater is perhaps the 

easiest to understand. This can be illustrated by investigating a two electron system. The 

simplest product form of our approximate wavefunction would be 

* (n,r2) « Xi(n)X2(r2). (2-12) 

The product form in Eq 2.12, the Hartree product [15], is clearly not antisymmetric with 

respect to exchange of labels. However, an antisymmetric form is given by 

* (ri,r2) « Xi(ri)X2(r2) - Xi(r2)X2(ri)- (2-13) 

It is clear that 

*(r1,r2) = -*(r2,r1). (2.14) 

It is easy to see that Eq 2.13 could be obtained from the determinant of a matrix 

= Xi(n)x2(r2) - Xi(r2)x2(ri). (2.15) Det 
Xi(n)   X2(ri) 

Xifo)   Xi{r2) 
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For normalization, one would have to multiply Eq 2.15 by ^=. Slater originated this form 

of the wavefunction, which is called the Slater determinant [17]. The general pattern for a 

Slater determinant wavefunction is 

f (ri...,T>r) rm =Det 

Xi(l) X2(l) Xa(l) 
Xi(2) X2(2) Xs(2) 
Xi(3)     X2(3)     X3(3) 

Xiv(l) 
Xiv(2) 
Xiv(3) 

XN(N) 

(2.16) 

Xi(^V) X*(N) Xs(iV) 

The Slater determinant wavefunction is commonly abbreviated as Det |\P (7V.., r^)). Ex- 

change of electrons would correspond to swapping two rows in the matrix, which will change 

the sign of the determinant satisfying the antisymmetry requirement. If two columns in 

the matrix are identical, i.e., two electrons of the same spin are placed in the same orbital, 

the determinant is 0, as required by the Pauli exclusion principle. 

The functions used in the Slater determinant must describe both the spatial behavior 

and the spin of the electron. Thus, 

xi  =  V>i« 

X2  =  i>iß- 
(2.17) 

where a is a spin eigenfunction with eigenvalue of the Sz operator of +1/2 (spin up), and 

ß is a spin eigenfunction with Sz eigenvalue -1/2 (spin down). A molecule usually has an 

even number of electrons, i.e., a "closed shell", so one can assume that each pair of alpha 

and beta electrons reside in the same spatial wavefunction. This assumption enables one 

to eliminate an explicit consideration of spin from the problem. This assumption is used 

in the Restricted Hartree Fock (RHF) procedure, where restricted refers to the restriction 

that pairs of electrons reside in the same spatial wavefunction. In the Unrestricted Hartree 

Fock (UHF) procedure, each electron is taken to reside in a different spatial wavefunction. 

This increases the size of the calculation, but may provide a lower energy approximate 

wavefunction. However, one is not guaranteed that the approximate wavefunction pro- 

duced using the UHF procedure will be an eigenfunction of the S2 operator. (This topic 

will be discussed in greater detail in Section 2.1.8.) Spin contamination problems can be 
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avoided by using the Restricted open shell Hartree Fock (ROHF) procedure. In the ROHF 

approach, doubly occupied molecular orbitals are restricted to be identical for both a and 

ß spins, while the unpaired electrons are taken to reside in different orbitals. 

In quantum chemistry calculations, the spatial wavefunctions that build up the Slater 

determinant wavefunction are typically molecular orbitals (MOs ) generated from the linear 

combination of atomic orbitals (LCAO) procedure. That is, 

$i = Y^ci^i (2.18) 

The functions used for the spatial wavefunctions are crucial for the accuracy and com- 

putational time required for the calculation of approximate wavefunctions, and will be 

discussed in greater detail in Section 2.1.4. 

Finally, it is instructive to look at the expectation value of the electronic Hamiltonian 

calculated with Slater determinant wavefunction. We see that the terms Te and Ven depend 

on only the coordinates of a single electron, and will be equal for all the electrons. These 

two terms are also present in the single electron case, and are generally lumped together 

under the designation h(l). The electron-electron interaction term is not present in the 

one electron case, and gives rise to interesting matrix elements. For a two electron Slater 

wavefunction, 

Xa(l)X»(2)-Xa(2)x»(l)| 
ri2 

Xa(l)x»(2)-X«(2)x»(l) 

(Xa(l)X»(2) 

(Xa(2)X»(l) 

Xa(l)X»(2))     -      (xa(l)X»(2) 

Xa(l)x»(2))    +    (x«(2)x»(l) 

Xa(2)X»(l)) 

Xa(2)X»(l)) ■ 
(2.19) 

An alternate notation for these integrals is 

[aa|66] - [a6|6a] - [6a|a6] + [fefe|aa] (2.20) 

The first and last integrals in 2.19 look like the charge density of electron 1 (2) in orbital \a 

(Xb) interacting with the charge density of electron 2 (1) in orbital Xb (Xa) over the distance 
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Ti2- These resemble classical Coulombic interactions, hence these terms are referred to as 

Coulomb integrals. However, the second and third integrals arise from the antisymmetry 

of the wavefunction and have no classical interpretation. They look as though electron 

labels have been "exchanged" between the two orbitals, and are referred to as exchange 

integrals. Unlike the Coulomb terms where the charge density can be localized to specific 

areas of the molecule, the exchange terms cannot be localized. In Eq 2.20, the Coulomb 

terms have positive signs, adding to total energy, hence are "repulsive", as one expects for 

Coulombic interactions of two particles with the same charge. The exchange terms have 

negative signs in Equation 2.20, reducing the total energy, and thus are "attractive". 

We also note that the Coulomb integrals are positive ("repulsive"), while the ex- 

change integrals are negative ("attractive"). 

2.1.3 Optimization ofthe Approximate Wavefunction: The Hartree-Fock-Roothaan 

Procedure. Now that we have established a form for the Hartree-Fock trial wavefunc- 

tion, we need to develop a systematic procedure to calculate the best single determinant 

wavefunction approximation to the right answer. The energy, the expectation value of the 

electronic Hamiltonian, is a functional of the spin (molecular) orbitals. Thus, functional 

minimization of energy subject to the constraint that the spin orbitals remain orthonormal 

will provide equations for the solution of the best approximate wavefunction. This proce- 

dure was performed by Hartree and Fock, and led to the canonical Hartree-Fock equations 

for the spin orbitals: 

/|Xi> = *lx.->. (2-21) 

Here, / is the Fock operator, which is the electronic Hamiltonian operator represented in 

a Slater determinant wavefunction basis. This canonical Hartree Fock procedure results 

in a set of N coupled PDE's, which, as discussed earlier, cannot be efficiently solved by 

numerical integration. 

In a seminal development, Roothaan [18] showed for the RHF case that by represent- 

ing the Hartree Fock equations on an explicit set of spatial basis functions, one could obtain 

a set of algebraic equations that could be solved by straightforward matrix techniques. In 

this derivation, each pair of electrons is represented by a molecular orbital (spatial part 
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of the spin orbitals) that are built from linear combinations of atomic orbitals (LCAO). 

In the minimal basis set, each electron contributes one AO to the MO. Thus, the minimal 

basis set for molecular hydrogen is 

Mri)      =    cn(f>a(ri) + c2i<f>b(ri) Molecular Orbital 1 

Mrd      =   CuMr<) + c2iMri) Molecular Orbital 2 (2.22) 

^(ri,^)   ~   ^(fi^^i) - V'i(?,2)V,2(»'2)   Antisymmetrized Wavefunction. 

Applying functional minimization to the expectation value of the energy, Roothaan 

obtained the following nonlinear matrix equation: 

F (c) Ü = f Ü e. (2.23) 

F is the matrix representation of the Fock Hamiltonian. C is the matrix of coefficients 

of the AO's. S is the overlap matrix of the AO's. Because the AO's are not centered on 

the same point in space, the overlap matrix is not the identity matrix and must be carried 

along in the solution. e*is the matrix of eigenvalues, which can be taken to be diagonal 

and treated as a vector without loss of generality. The dependence of the Fock matrix on 

the molecular orbitals introduces the nonlinearity in the problem. 

Two factors complicate the solution of the Roothaan equation. The Roothaan equa- 

tion is not in the canonical form of a matrix eigenvalue equation because the basis of AOs 

is not orthogonal. One must transform to an orthogonal basis, solve the resulting matrix 

eigenvalue equation, and then transform back to the original nonorthogonal basis. Second, 

F depends on C, making the Roothaan equation nonlinear. Thus, one is forced to use an 

iterative method to obtain a solution. 

Roothaan used the following procedure to solve Eq 2.23. First, one makes an initial 

guess at the coefficient matrix C0 (the electronic wavefunction) and calculates an initial 

value for F. The problem is then transformed to an orthogonal basis. The resulting matrix 

equation is solved, producing the first approximation to the coefficients of the wavefunction 

C1. This solution is transformed back to the original nonorthogonal basis and compared 

to C0. If C0 and C1 differ by more than some user-determined limit, a second iteration 
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is started using Cj. This process is repeated until the difference between a solution Cn 

differs by less than the user-determined limit from the previous solution, C„_i. When this 

condition is satisfied, the solution is said to be self consistent, hence the origin of the name 

Self Consistent Field. Because the Roothaan equations are nonlinear, the simple iteration 

procedure described above is not guaranteed to converge [19]. Convergence problems are 

not unusual, but more sophisticated iteration schemes generally achieve convergence except 

when the initial geometry specification contains significant errors. 

Pople and Nesbit subsequently extended Roothaan's work to the Unrestricted Hartree 

Fock (UHF) case, in which pairs of spin a and ß electrons are not restricted to reside in the 

same spatial wavefunction [20]. In analogy with the RHF case, they obtained two coupled 

matrix eigenvalue problems 

Fa (Ca, Cg) Ca    =    SC„£„ 
_   v_   _' _   (2.24) 
F/3 (Ca,Cßj Cß    =   SC^ £ß. 

These matrix equations can be solved independently at each step in the iterative process, 

though they are coupled through the formation of the Fock matrices. The UHF procedure 

may be used for closed and open shell systems. The Restricted Open shell Hartree Fock 

procedure (ROHF) avoids the spin contamination problem of the UHF approach by re- 

stricting doubly occupied molecular orbitals to be identical for both a and ß spins, while 

the unpaired electrons are taken to reside in different orbitals. 

The HF-SCF procedure produces a set of eigenvalues and eigenvectors of a matrix 

equation. The eigenvalues are the orbital energies; the eigenfunctions are the molecular 

orbitals that minimize the energy. For a closed shell system, a single determinant wave- 

function is invariant to an arbitrary unitary transform (of the coefficient matrix). Thus, 

the spin orbitals that make the total energy stationary are not unique, and no particular 

physical significance can be given to a set of spin orbitals. However, a specific set of spin 

orbitals may have properties that make them preferred. The spin orbitals defined in the 

energy eigenbasis of the Hamiltonian produce a diagonal set of orbital energies and will 

form a basis for an irreducible representation of the point group of the molecule. Having a 
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priori knowledge about the symmetry of the solution can enable one to use this symmetry 

to simplify the calculation. One can use a criterion such as minimization of the exchange 

interaction between spin orbitals to transform to a set of "localized" spin orbitals which 

better match the qualitative interpretation of chemical bonding [21]. 

2.I.4 Basis Functions and Matrix Elements. The choice of spatial basis functions 

for use in the HF-SCF procedure is driven by several sometimes conflicting considerations: 

accuracy of the answer (energy, geometry), ease of calculating the matrix elements, and the 

desire for a clear physical interpretation. Building on the qualitative linear combination 

of atomic orbitals molecular orbital (LCAO-MO) picture of molecular electronic structure, 

the logical first choice for HF-SCF basis functions was hydrogen atom wavefunctions. The 

hydrogen atom electronic wavefunctions are of the form 

$(r,M)=-Mr)y,m(M). (2-25) 

The radial dependence is given by 

r,    /x ( z V   Kn-£-l)lf2Zr\' Zr 
na0 «'(S)>      <2-26> 

where X^1 (^-) are the associated Laguerre polynomials and the angular dependence is 

given by Yim(0, <f>), the spherical harmonics [22]. Three-dimensional plots of these functions 

can be found in almost all texts on quantum mechanics. 

The complicated form of the associated Laguerre polynomials gives rise to the familiar 

radial nodes in electron density in the hydrogen atom. This complicated form is difficult 

to integrate in matrix element calculations. Slater proposed a much simpler analytic form 

for the radial part of the wavefunction: 

Rnl{r) = (20n+"{(2n)\]-hn-1Exp[-Cr}. (2.27) 

The orbital exponent ( is given by 

C = ^- (2-28) 
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Here, s is a screening constant and n* is an effective quantum number. Slater also developed 

some empirical rules for choosing s and n* for different elements. Optimized values for 

orbital exponents in Slater functions currently in use have been obtained by numerical fits 

of HF-SCF on atoms calculations to experimental data. These optimized parameters do 

not differ greatly from those obtained using Slater's rules. 

An important feature of the Slater radial functions is that with their simpler de- 

pendence on r, they do not produce radial nodes in the electron density. This lack of 

radial nodes has two consequences. First, Slater functions centered on the same origin are 

not orthogonal. This is not a problem since a molecular HF-SCF calculation necessarily 

involves nonorthogonal sets of functions because each set is centered on a different point 

in space, i.e., the various nuclei in the molecule. One can construct an orthogonal set of 

single-center Slater functions using the Gramm-Schmidt process, for example. However, 

this doesn't eliminate the need to orthogonalize the atomic basis in order to solve the 

Roothaan equations, and thus offers no computational advantage. 

A more important concern about the lack of radial nodes is its poor physical de- 

scription of electronic behavior. This is very important in an HF-SCF calculation on an 

atom. However, molecular behavior has been found to be predominantly driven by the 

atoms' outer-shell electrons, whose electron density is modeled well by a decaying expo- 

nential. The poor description of electron density near the nuclei has been found in general 

to have a minor effect in calculations of molecular behavior, though this effect is larger in 

calculations involving light elements. This poor description of the electronic behavior in 

the vicinity of the nuclei also produces large errors in the prediction of properties such as 

nuclear magnetic resonance (NMR) coupling constants and electron spin resonance (ESR) 

hyperfine constants [19]. 

Slater functions have been shown to work well in HF-SCF calculations. That is, 

to obtain given level of required accuracy, fewer Slater functions can be used than other 

types of functions. Unfortunately, the good physical description of atomic electron density 

provided by Slater functions is overwhelmed by the computational difficulty of evaluating 

matrix elements using Slater functions. This is easily illustrated by looking at an electron- 

electron matrix element between electrons centered on two different atoms, A and B. 
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Neglecting the angular part, we have 

(A\B) =  I d^Expl-aln - RA\] X Explain - ÄB|]. (2.29) 

Evaluation of this integral is difficult and computationally expensive because the two ex- 

ponentials are not centered at the same point in space. Boys [23] introduced the use 

of Gaussian functions to address the computational difficulties involved with integrating 

products of Slater functions. Products of Gaussian functions possess a very useful property: 

Explain - RA\2} X Expl-ßln - RB\2} = KxExpi-pln - RB\\ (2.30) 

where 
p     =    a + ß 

K    =   Exp[-^\RA-äBf] (2.31) 

S       _      aRA+ßRB 
-"-P      — a+ß 

Here we see that the product two Gaussians centered on different points is a third Gaussian 

centered at a single point in space, which can be integrated very rapidly. Gaussians might 

be a very efficient choice for basis functions. 

Unfortunately, Gaussians do not model electronic behavior nearly as well as an ex- 

ponential. Compared with the exact solution for electron density of atomic hydrogen as a 

function of distance from the nucleus, a Gaussian description of falls off much too rapidly 

as a function of distance (R) from the nucleus, and the spatial derivative of a Gaussian is 

non-zero at R = 0, while the exact solution has a derivative equal to zero at R = 0. Pople 

et al. [24] suggested a very useful alternative, representing a Slater function with an ex- 

pansion of Gaussian functions. Pople and others have found that one needs approximately 

three times as many Gaussian Type Orbitals (GTOs) than STOs to obtain the same level 

of accuracy, increasing the size (memory requirements) of the calculation. However, the 

computation time using the larger number of Gaussians is more than an order of magnitude 

faster than the smaller calculation using exponentials. With the exception of periodic crys- 

tal calculations that use Bloch orbitals, nearly all contemporary computational chemistry 

codes use Gaussians, with a small minority using pure STOs. 
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A specific vocabulary has evolved to describe the various types of basis set expansion 

commonly in use. A minimal basis set (MBS) contains only as many orbitals as are 

needed to accommodate the electrons of the neutral atom. Thus, the minimal basis set 

description of both oxygen (8 electrons) and carbon (6 electrons) contains 5 basis functions 

since oxygen and carbon are both second row elements. The MBS for each contains terms 

for Is, 2s, 2px, 2py, and 2pz atomic orbitals. The differences between oxygen and carbon 

are reflected in the parameters used in these atomic orbitals. A typical MBS using a 

Gaussian fit to a Slater Type Orbital (STO) is termed a STO-nG basis set, where n is the 

number of Gaussians used to approximate the Slater function. While an MBS calculation 

yields energies significantly above the BF limit, an MBS result maps directly to qualitative 

LCAO descriptions commonly used in chemistry and thus can be readily interpreted. 

One reason why an MBS calculation provides poor results is that an MBS description 

does not have the capability to expand or contract the orbital in response to different 

bonding environments. One solution to this problem is to use a split-valence or double £ 

(DZ) basis set. In these basis sets, the atomic orbitals are split into two parts: an inner, 

compact orbital and an outer, more diffuse orbital. The coefficients of these two types of 

orbitals can be varied independently in the SCF procedure. Thus, the radial extent of the 

atomic orbital that contributes to the molecular orbital can be varied within the limits set 

by the inner and outer basis functions. A split valence basis set only splits the valence 

orbitals this way, while a DZ basis set also splits the core atomic orbitals. The triple £ 

(TZ) splits each orbital into three pieces [25]. 

The effect of core electrons in molecular electronic structure is minimal in most 

situations, so split valence basis sets are used more often than DZ or TZ basis sets. A 

popular family of split valence basis sets is the 6-31G basis set, which uses a 6 term 

Gaussian expansion to represent the core electrons three Gaussians for the inner valence 

electrons, and a single Gaussian for the outer valence electrons. The 6-31G* (6-31G(d)) 

adds a spatial function that resembles an atomic hydrogen d orbital on valence electrons 

of second and third row elements. The 6-31G** (6-31G(d,p)) also adds p type orbitals on 

the valence electrons of hydrogen atoms. The additional orbitals in these basis sets are 

referred to as polarization functions [26]. 
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Basis sets used in commercial computational chemistry codes are a compendium of 

the work of a large number of researchers who have generated optimized basis sets for 

almost every element in the periodic table. A comprehensive reference of optimized basis 

sets can in the manual of a "production" computational chemistry code such as Gaus- 

sian92 [5] or GAMESS [9]. Variations of the 6-31G(d) basis set are generally considered 

the minimum needed for reliable accuracy in geometry optimization. 

While the accuracy of the answer of an HF-SCF calculation improves with increasing 

basis set size, the computational cost increases even faster. The computational cost of an 

HF-SCF calculation scales roughly as n4, where n is the total number of basis functions in 

the molecule. The total energy asymptotically approaches the Hartree-Fock limit as the 

number of basis functions increases. 

2.1.5 A Simple HF-SCF Example: H2 . As a concrete example, here are some 

illustrative results (in atomic units) for a minimal STO-3G basis set RHF calculation for 

molecular hydrogen. These values are calculated at a fixed internuclear separation of 1.4206 

atomic units. 

One Electron 
Terms 

-1.1139   -0.954 
-0.9546    -1.113 

1.0      0.6522 
0.6522      1.0 
Overlap Matrix 

+ 

X 

Two Electron Initial Guess 
Terms                      of Coefficients 

0.7541   0.3571 

)■ 
cll      c12 

0.3571   0.7541 c21      c22 

cll      c12 
c21      c22 

X 
El 

Initial Guess                   Energy 
of Coefflcien ts E ig enva ues 

(2.32) 

The eigenvectors of the one electron terms are often used as the initial guess of the 

coefficients. A different initial guess will converge to the same result with a simple iteration 

scheme for this problem. 
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An HF-SCF calculation gives the following results for H2: 

MOi M02 

AOa         0.7071 0.7071 
AOj         0.7071 -0.7071                                           (2.33) 

Orbital   -0.5737 0.6591 
Energy 

These results are consistent with what one expects. There are two molecular orbitals, 

one bonding (negative energy) and one antibonding (positive energy). The lower energy 

MO has two positive coefficients in its approximate wavefunction, thus has no nodes in the 

electron density (square of the wave function). The higher energy MO has one positive 

and one negative coefficient, thus has one node in its electron density. Since we are using 

the RHF approximation, one spin alpha and one spin beta electron would fill the bonding 

MO. The total energy of the configuration, electronic energy plus nuclear repulsion, is 

-1.116 Hartrees. The dissociation energy, the difference between the total energy of the 

H2 molecule and two separated H atoms, is predicted to be 3.155 eV, roughly a 33% error 

from the experimental value of 4.74 eV. 

2.1.6    Effects of Electron Correlation:   The Hartree Fock Limit. Seeking the 

solution to a PDE as a product of single variable functions is only correct when the PD 

operator does not couple any of the variables. When one seeks a solution to the molecular 

Schrödinger equation in the form of a Hartree-Fock product wavefunction, the wavefunction 

does not account for the fact that the motion of the electrons is coupled, although the 

electrons are coupled in the Hamiltonian. The Born-Oppeinheimer approximation is based 

on the fact that the mass of an electron is so much smaller than the mass of a nucleus to say 

that nuclear and electronic motion is independent, i.e., that nuclear and electronic motions 

are uncorrelated. There is no similar physical justification for decoupling the motion of 

one electron from another. One expects electron-electron motion to be highly correlated. 

Thus, the Born-Oppeinheimer approximation is a much better approximation than the 

Hartree-Fock approximation. 

There are three factors involved in correlation of electron motion within a molecule. 

First, there is Coulomb repulsion,—, which becomes infinite when r^ is zero, which makes 
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it energetically unfavorable for two electrons to be close to each other. A two-electron 

density function is always smaller in regions where the electrons are close to each other 

than corresponding density from two one-electron density functions. A second source of 

correlation effects is associated with the Pauli principle. In a single determinant wavefunc- 

tion, interactions between electrons of different spin are smaller since that is a Coulombic 

but not an exchange interaction between electrons that have different spins. A corre- 

lated description of the motion of two electrons keeps their time-averaged separation from 

becoming too close. The third factor which influences electron correlation is the spatial 

symmetry of the molecule. 

The effect of electron correlation is primarily described in terms of energy. One of 

the most widely used definitions of the correlation energy is given by Löwden [27]: 

The correlation energy for a certain state with respect to a specified Hamilto- 
nian is the difference between the exact eigenvalue of the Hamiltonian and its 
expectation value in the Hartree-Fock approximation for the state under con- 
sideration. 

An HF-SCF answer improves (becomes lower in energy) as one increases the size of the 

basis set, and converges to a limit. The limit to which the HF-SCF procedure converges 

is known as the Hartree-Fock limit. The correlation energy at equilibrium is typically 

20-30% of the dissociation energy, i.e., correlation errors are large. Correlation error often 

increases with increasing internuclear separation. Thus, the use of the uncorrelated elec- 

tronic wavefunction in the HF-SCF model will produce larger errors for chemical reactions 

that involve bond making and breaking than the calculation of equilibrium properties. 

HF-SCF will be quantitatively wrong for the simulation of chemical reactions, and may 

also predict qualitatively wrong behavior. 

In spite of the limitations of the HF-SCF procedure, there are a number of reasons 

why HF-SCF is so widely used. Historically, molecular problems were investigated be- 

fore the advent of digital computers, and the Hartree Fock approximation was the only 

computationally tractable model available. Because HF-SCF calculations have been per- 

formed for a long time, they're limitations are well understood, so one can judge whether 

an unexpected result was caused by a limitation in the calculation or a new physical mech- 
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anism. On current computers, a wide range of problems can be solved relatively quickly, so 

within the limitations of HF-SCF, qualitative behavior can be mapped out before turning 

to more accurate and computationally intensive methods. Failures of this approximation 

provide guidance on what kinds of improvements are needed to improve the accuracy of 

the calculations. (Bond breaking is one important process for which HF-SCF description 

is inadequate.) Finally, the single term wavefunction often provides a good starting point 

for methods that can go beyond the Hartree-Fock limit. 

2.1.7   Beyond the Hartree-Fock Limit. 

2.1.7.1 Configuration Interaction. As discussed earlier, a function of more 

than one variable can be expressed exactly as an infinite series of products of single variable 

functions. The Hartree-Fock optimized wavefunction is the best leading term in the exact 

infinite series expansion of this the multi-electron wavefunction (to the accuracy of the 

basis set used). An obvious method to improve on this approximation would be to include 

more terms in the series. This method is called configuration interaction (CI). 

A CI calculation essentially consists of representing the molecular Hamiltonian on 

a basis of a set of Slater determinant spin orbitals (configurations) and diagonalizing the 

resulting matrix. The lowest energy eigenvalue is the approximate ground state energy. 

The lowest energy eigenvector provides the coefficients for the series expansion of the 

ground state wavefunction in terms of the Slater determinant spin orbital basis. In CI, 

correlation of electron motion is accounted for by including configurations in the basis set 

that possess different spatial distributions to enable the electrons to find ways to stay away 

from each other as needed to reduce the energy. The Hartree-Fock approximation only 

provides the electrons with a single configuration. 

The price paid for recovering the correlation energy is a greatly increased compu- 

tational cost. In a minimal basis set, for N electrons one has a total of 2N spin orbitals. 

From these spin orbitals, one can create (2^) unique determinant wavefunctions. For H2, 

one can create 6 unique determinants. For H20 with 8 valence electrons, the number of 

unique determinants grows to 12,870. In practice, one can use symmetry arguments and 
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other tricks to arrange the eigenbasis so that the matrix representation of the Hamiltonian 

pops out in block form; however, almost always, one must truncate a CI expansion. 

One needs to obtain set of spin orbitals before setting up a CI expansion. A common 

way to obtain a reasonable set of spin orbitals is to first perform an HF-SCF calculation. 

However, the spatially delocalized, energy eigenbasis MOs produced by the HF-SCF pro- 

cedure have proven to give poor convergence behavior in CI. The set of natural orbitals, 

introduced by Löwdin, performs better in CI calculations (fewer configurations required 

for the same level of accuracy) than HF-SCF orbitals; however, the solution for the CI 

wavefunction is required before natural orbitals can be calculated [28]. Various schemes 

for obtaining approximate natural orbitals that can be used in CI calculations have been 

developed [29]. 

To summarize, in HF-SCF one uses a single determinant wavefunction to approxi- 

mate the ground state wavefunction, but optimizes the orbitals that construct the wave- 

function to minimize the energy. In CI, one uses many single determinant wavefunctions 

to approximate the ground state wavefunction, but optimizes the coefficients of each single 

determinant wavefunction to minimize the energy. An alternate, hybrid approach, the 

multi configuration self consistent field (MCSCF) procedure, has also been developed. In 

MCSCF, a number of single determinant wavefunctions are used in a series expansion of 

the ground state wavefunction; however, both the coefficients of these terms as well as the 

orbitals that construct the determinant wavefunctions are optimized. 

2.1.7.2 Generalized Valence Bond. The Generalized Valence Bond (GVB) 

wavefunction developed by Goddard et al. can be regarded as a special form of an MCSCF 

wavefunction [30, 31]. GVB is the simplest method that correctly models the configuration 

of diradicals. Since diradicals arise in the surface models considered in this research, and 

GVB calculations are performed, a brief description of the GVB method is presented here. 

As its name suggests, GVB is an extension of the Valence Bond (VB) concept of 

Heitler and London. Again, the concept is most clearly demonstrated for the simple case 
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of H2. For H2, the VB spatial wavefunction (neglecting normalization) is 

i>VB(l, 2) = ^(1)^(2) + MVMV, (2-34) 

where 4>a, <f>a are AOs centered on nuclei a and b. The total VB wavefunction is 

*^s(l, 2) = f/,VB(l, 2) [«(l)/3(2) - /?(l)a(2)]. (2.35) 

In both terms of the RHS of Equation 2.34, one electron is centered on each nuclei, i.e., 

the electrons are equally shared in the VB wavefunction. This corresponds to the concept 

of a covalent bond. The VB wavefunction is exact for infinite internuclear separation, but 

only approximate for finite separations. The errors in calculated equilibrium bond lengths 

and bonding energies are too large for quantitative purposes. 

Recalling the minimal basis set RHF solution for H2 (Equation 2.33), we obtained 

two spatial MOs (neglecting normalization) 

0i(r.-)   =   Mri) + <h(ri) /236s 

^(r.-)    =    4>a{ri) - <t>b(ri)- 

Since each MO can hold 2 electrons in the RHF model, only ipi() is occupied. The Hartree- 

Fock wavefunction is 

9HF(1,2) = Vi(l)V>i(2) [«(l)/?(2) - /?(l)a(2)]. (2.37) 

The spatial part of the HF wavefunction is 

*fF(l,2)   =    Vi(l)^i(2) = [0a(l) + ^(l)][^(2) + ^(2)] 

=    [&(1)&(2) +&(2)&(1)]    +    [6,(1)^,(2)+ &(1)&(2)] (2.38) 

= ^Covalent + V Ionic 

We see the HF wavefunction includes the covalent term found in the VB wavefuction, but 

adds a new term. Since this new term has both electrons simultaneously residing on either 
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nuclei a or b, it corresponds to an ionic description. The HF description forces an equal 

amount of covalent and ionic character into the wavefunction. 

In the case of strong bonding (equilibrium internuclear separation for H2), the overlap 

between <f>a and <f>b is large, the value of 0.65 seen in the off-diagonal terms in the overlap 

matrix in Equation 2.32. This leads to an overlap between the normalized <f>covaient and 

^ionic of ^2 = 0.91. For this case, the restriction of fixed ratio between <f>c0vatent and 

<f>ionie is not of major importance. However, for small overlaps, the restriction of a fixed 

ratio can cause severe problems. Small overlaps occur as bonds are broken, and in other 

systems that have weakly overlapping orbitals, such as diradicals. 

The GVB wavefunction for H2 is of the form 

VGVB(1,2) = [&(1)&(2) + &(1)&(2)] (2.39) 

where 

k      =       4>a        +      X<h (24o) 

The coefficient A is determined from optimization of the energy. Substituting Equation 2.40 

into Equation 2.39, we obtain 

qGVB = (1 + x^Cova}ent + 2AV>/0„«. (2.41) 

Thus, in GVB, the ratio of covalent to ionic character of the wavefuntion is determined 

from energy optimization. For cases of small overlap, the optimum value of A is very small, 

leading to a simple VB wavefunction. For cases with large overlap, A « 0.1, and both terms 

are important. 

An alternate form of the GVB wavefunction may be obtained by using MOs instead 

of AOs in Equation 2.39. The resulting GVB wavefunction expressed in MOs is 

tf G™(1,2) = Cl^(l)tf2(2) + ^(1)^(2). (2.42) 
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In molecular orbital language V>2, the unoccupied orbital, enables correlation between the 

electrons in the occupied orbital. This result emphasizes a fundamental limitation of the 

HF wavefunction. One can obtain a better energy, hence better approximation to the total 

wavefunction, by including an MO that HF theory says is unoccupied! For the case in 

which a single pair of (orthogonal) MOs is used, the GVB and MCSCF wavefunctions are 

identical. 

Evaluation of the total energy of the GVB wavefunction and application of the vari- 

ational principle to obtain the optimum GVB orbitals leads to a set of equations very 

similar to the HF equations except there is now a separate equation for each GVB MO. 

For a multi-electron system, the GVB wavefunction can be obtained from HF by 

replacing each electron pair 

t/>i(2i - 1)^(20 (2-43) 

of the HF wavefunction with the electron pair 

ißia(2i - l)i&,-»(2») + ^4(2» - 1)&„(2») (2.44) 

resulting in a product wavefunction of the form 

(V'laV'li + i)lbi>la){4>1ai>2b + i>2bi>2a)-{ll>Nai>Nb + IpNb^Na)- (2-45) 

The total wavefunction, obtained antisymmetric combinations of Equation 2.41 and spin, 

is composed of a large number of Slater determinants. 

In many situations, one is interested in a correlated description of only a single bond 

in a molecule. In cases like this, the total wavefunction consists of two Slater determinants: 

a small one for the pair of GVB orbitals, and a large one for the rest of the molecule. I.e., 

many GVB calculations look like RHF calculations plus a little bit more. Because of this, 

the computational cost of GVB calculations scales as n4. GVB calculations are useful 

because one can recover a a good chunk of the correlation energy for a relatively low 

(compared to other methods that include correlation) computational cost. 
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2.1.7.3 Perturbation Expansion of the Correlation Energy. Perturbation 

theory is commonly used in quantum mechanics to obtain solutions to problems which do 

not have exact (in a finite number of terms) solutions. The Hamiltonian is partitioned 

into two pieces: a zeroth-order part which has known eigenvalues and functions and a 

perturbation term. 

H = Ho + V (2.46) 

One can derive a power series expansion for the perturbation term. In order to obtain the 

first-order correction to the energy (eigenfunction), one needs the zeroth-order wavefunc- 

tion (eigenfunction). By definition, the perturbation must be smaller than the zeroth order 

term in the Hamiltonian. The smaller the size of the perturbation compared to the zeroth 

order term, the fewer terms will be needed in the series expansion to obtain a desired level 

of accuracy. 

The perturbation approach described above is known as Rayleigh-Schrödinger Per- 

turbation Theory [32]. A perturbation approach seems ideal for HF-SCF since the elec- 

tronic Hamiltonian, Eq. 2.10, naturally partitions itself into a one-electron piece with exact 

eigenfunctions and eigenvalues and the two-electron piece that causes all the trouble. Un- 

fortunately, the two-electron energy is not small compared to the one electron energy, so a 

perturbation expansion of the two-electron energy is inappropriate. However, the correla- 

tion energy is small compared to the Hartree-Fock energy, so we can devise a perturbation 

expansion in terms of the correlation energy. 

First, we partition the electronic Hamiltonian as in Eq. 2.46. Here, 7i0 is the Hartree 

Fock Hamiltonian, 

Wo = EhO + *HF(«')], (2-47) 
i 

where v      (i) is the sum of the Coulomb and Exchange terms, and 

v = E*-«1-E«HF(0. (2-48) 

The perturbation term is the difference between the Hartree-Fock representation for the 

two electron interactions and the exact representation of the two electron interactions. The 
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use of this partitioning of the Hamiltonian and the Rayleigh Schrödinger perturbation ex- 

pansion is known as Moeller-Plesset Perturbation Theory [19, 33]. Using this partitioning, 

one can show that the factor of \ added to the two electron terms in the Hartree-Fock 

Hamiltonian to avoid double counting of electron-electron interactions is actually the first 

order correction to the energy. Moeller-Plesset (MP) perturbation corrections for the cor- 

relation energy start at second order, MP2. 

MP2 and MP4 perturbation expansions are available in many commercial compu- 

tational chemistry codes. Perturbation approaches provide comparable recovery of the 

correlation energy for a lower computational cost than a CI calculation. However, it is 

important to note that perturbation expansion techniques operate on single configuration 

wavefunctions. Thus, a CI (MCSCF) calculation may be required in situations (dissocia- 

tion) poorly described by single configuration wavefunctions. 

2.1.8    Optimized Approximate Wavefunctions: Metrics and Accuracy. 

2.1.8.1 Metrics. The HF-SCF procedure produces an optimized, approxi- 

mate electronic wavefunction. However, the wavefunction itself is not a directly observable 

entity, so we must judge the quality of the result of the HF-SCF by comparing predicted 

observable properties (expectation values of Hermitian operators on the approximate wave- 

function) with experimental results. Useful metrics are the total energy, the geometry, the 

spin eigenvalue, and the virial of the wavefunction. These parameters are not all equally 

sensitive to small changes in the wavefunction. 

The variational approach used to derive the HF-SCF procedure guarantees that the 

expectation value of the energy of the approximate wavefunction will monotonically ap- 

proach the true ground state energy from above as a limiting value. Thus, if you have 

two approximate HF-SCF wavefunctions, the one that has the lower energy is a better 

approximation to the true ground state wavefunction. The energy is sensitive to small 

variations of the wavefunction, and is the primary metric of the approximate wavefunc- 

tion. Comparisons with experiment are not always as straightforward because experiments 

measure energy differences rather than absolute energies. The dissociation energy of H2 is 
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defined as the difference in energy between the molecule and two separated H atoms. The 

STO-3G calculated dissociation energy of H2 is 5.0 eV, greater than the experimental value 

of 4.74 eV. This is primarily a reflection of the problems with the accuracy of a STO-3G 

calculation on the H atom, as is seen below: 

H atom STO 3 H2 STO-3G 
2 X (-12.690)     - 30.399 =     5.019 eV 

H atom Exact H2 STO-3G 
2 X (-13.607)     - 30.399 =    3.185 eV. 

The calculated geometry of a molecule, bond lengths, bond angles, etc is often used as a 

metric of the approximate wavefunction. However, these properties are not very sensitive 

to small changes in the wavefunction. 

We know from quantum mechanics that the S2 operator has exact eigenvalues when 

operating on the electronic wavefunction. A RHF calculation places pairs of opposite spin 

electrons in the same spatial molecular orbital, so the spin exactly cancels out and the 

spin eigenvalue is exactly zero. A UHF calculation places each electron into a different 

spatial orbital. This added flexibility means that while a UHF calculation will in general 

produce a lower energy than an RHF calculation on the same molecule, it is not guaranteed 

to produce an exact spin eigenvalue. This phenomenon is called spin contamination. A 

UHF answer with a good energy value but with a spin eigenvalue significantly different 

from the correct value is most likely a poorer approximation than a slightly higher energy 

answer with smaller spin contamination. Pulay [25] recommends that a result with spin 

contamination less than 10% greater than the exact value for {S2J can be considered 

reliable. 

One can show that the minimum energy solution for the electronic wavefunction 

satisfies the virial theorem [34], i.e., 

($(r1,r2,...,fiV)|T|$(f1,r2,...,fw)) = --(*(Fi,F2,-.-,^)|y|$(f1,r2,...,fJv)). 

(2.49) 

The virial theorem provides another check on the approximate answer. Large deviations 

from a virial ratio, - j^j- of 2 indicate problems with the results.  Figure   2.2 shows the 
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Figure 2.2   H2 STO-3G Virial Ratio 

values of the virial ration for H2 for a range of separations. (The energy components of 

these calculations were shown in Figure 2.1.) The STO-3G optimized wavefunction gives 

a virial ratio of 1.9247, while the 6-31G optimized wavefunctions result in a virial ratio of 

1.9925. 

2.1.8.2    Accuracy:  Equilibrium Properties. The issue of accuracy in an 

HF-SCF calculation is complicated because all the molecular properties are not equally 

sensitive to changes in the electronic wavefunction. Compounding the issue is the fact 

that HF-SCF accuracy is a function of internuclear separation; the accuracy of an HF- 

SCF result degrades as one moves away from the equilibrium configuration. Table 2.1 

shows the calculated total energies for H2 with several basis sets. The percentage change 

of the total energy from STO-3G to the Hartree-Fock limit is only 1.5%. However, the 

predicted dissociation energy changes by 13%. The bond length is seen to change by 3% 

for this range of basis sets. 

This simple example illustrates a fundamental challenge in computational chemistry: 

the observable properties of interest must be calculated from small differences of very large 

quantities. Improvements in these small differences are not proportional to improvements 

in the quantities you can calculate. 
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Basis Set Energy (eV) Bond Length (Ang) 
ST0-3G -30.398                        0.7122 
4-31G -30.671                        0.7303 
6-31G** -30.780                        0.7329 
HF Limit -30.862[35] 
Experiment -31.94                       0.7414 

Table 2.1    H2 Total Energy and Equilibrium Bond Lengths 

Typical accuracies that can be achieved in HF-SCF plus correlation correction calcu- 

lations are listed below. Is this accuracy good or bad? It depends on what kind of data one 

Parameter Accuracy Limit 
Bond Length 0.01 - 0.02 Angstroms 
Bond Angle 1-2 Degrees 
Reaction Barrier 10 £f£ mote 

Table 2.2    Computational Accuracy Limits 

is comparing. For spectroscopy, where one can measure energy differences down to parts 

per billion, this accuracy is atrocious. For a materials science, where the primary interest 

is in ground state geometries, this level of accuracy good enough for almost all cases. For 

chemistry, where one is attempting to explain a reaction mechanism, this accuracy is good 

enough most of the time. However, some pathological reactions, like F + H2 -»■ HF + H 

have reaction barriers approximately equal to the ultimate uncertainty of the best calcula- 

tions. For reactions such as these, it's very difficult to obtain reliable theoretical estimates 

of reaction rates. 

2.1.8.3 Dissociation Limit. Most electronic structure calculations are con- 

cerned with finding equilibrium molecular properties such as structures and energies. How- 

ever, to model chemical reactions, one also needs to insure that the wavefunction used to 

describe the equilibrium behavior of the molecule also has the correct dissociation limits. 

This issue is commonly illustrated by the example of the H2 molecule. At the minimum 

energy equilibrium separation, we know from spectroscopic measurements that H2 is a pure 

singlet state. In order to insure the correct solution, the ground state of H2 must be de- 

scribed using the RHF approximation. Unfortunately, the RHF approximation forces both 

2-28 



electrons into the same spatial orbital, so that if one increases the internuclear separation 

to beyond the dissociation limit and calculates the minimum energy solution, one finds 

that the predicted dissociation limit is H~ + H+, clearly at odds with the correct limit of 

2 neutral hydrogen atoms. Using the UHF approximation corrects this discrepancy in the 

dissociation limit. Unfortunately, the ground state of H2 in the UHF approximation is no 

longer a pure singlet. Thus a single configuration cannot adequately describe the behavior 

of H2 over the full range of internuclear separations. Only a multi-configuration approach 

can correctly describe this behavior. 

A simple way to correct this problem is to describe H2 using two configurations, a 

pure singlet for the ground state, and two separated hydrogen atoms to match the disso- 

ciation limit, with adjustable coefficients. At equilibrium, the coefficient of the separated 

hydrogen atom configuration is zero. At the dissociation limit, the coefficient of the sin- 

glet configuration is zero. At intermediate separations, the coefficients vary to provide the 

minimum energy solution. 

2.2    Other Computational Approaches 

2.2.1 Semi-Empirical HF-SCF. Semi-empirical (SE) HF-SCF techniques origi- 

nated in the 1960's when it became obvious that ab initio HF-SCF techniques would be 

impractical for the study of large polyatomic systems with the computers available at that 

time. SE techniques derive their name from the fact that they are based on a Hamiltonian 

operator-electronic wavefunction (quantum mechanical) framework. However, unlike ab 

initio techniques which calculate all the matrix elements in the representation of the elec- 

tronic Hamiltonian, SE techniques make extensive use of approximations to these terms 

avoiding the time consuming integrations involved. The use of experimental (empirical) 

data to determine the parameters in these approximations results in chemically useful 

accuracy, in significantly (orders of magnitude) less time than a corresponding ab initio 

calculation. However, as more terms are added to the approximation to improve the agree- 

ment of the calculated answer with the experimental result, the physical meaning of each 

term becomes more poorly defined and the SE technique may become more of a curve fit 

than a physical model. 
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As SE techniques have evolved, more and more variable parameters have been in- 

cluded in the approximate Hamiltonian to correct deficiencies identified with previous 

techniques. The underlying source of error is the incomplete functional approximations of 

the (crucial) neglected two electron matrix elements, referred to as differential overlap inte- 

grals. For example, the approximations made in Complete Neglect of Differential Overlap 

(CNDO) [36, 37] did not balance electron-nuclei attraction and electron-electron repulsion, 

which led to the spurious result that two neutral atoms several angstroms apart would still 

be attracted to each other. This deficiency was corrected in CNDO/2 by adding a param- 

eter to reduce electron-nuclei attraction. This correction had the unfortunate side effect 

of making the interaction between two hydrogen atoms in molecular hydrogen repulsive 

at all distances, but was retained because of its improvement on the majority of data in 

the parameterization set. Overall, CNDO left out too many matrix elements to give good 

results for many molecules of interest, so Intermediate NDO (INDO), in which fewer two 

electron integrals were set to zero, followed [38]. Neglect of Diatomic DI (NDDO)[36] ne- 

glected the differential overlap only for atomic orbitals on different atoms (hence the term 

Diatomic overlap). Modified INDO (MINDO 3)[39] modified the nuclei-nuclei interaction 

term and made the orbital exponents in the Slater functions variable instead of fixing them 

at the values suggested by Slater's rules. MINDO 3 was also the first attempt to develop a 

"generic tool" by including parameters for a large number of elements. Modified Neglect of 

Diatomic Overlap (MNDO) incorporated a correction term for interactions between lone 

pairs of electrons [40]. MNDO's main deficiency was its inability to reproduce hydrogen 

bonding, which precluded its application for many biological systems. The Austin Model 

1 (AMI) version of MNDO attempted to correct this deficiency by assigning a number 

of spherical Gaussian functions to each atom to mimic correlation effects [41]. The third 

parameterization of MNDO, MNDO-PM3 [42], uses the same terms as AMI but with a 

more sophisticated fitting algorithm for the parameters and is based on a much larger set 

of molecular reference data set than previous methods. 

For a more complete discussion, the reader is referred to Stewart's [43] review of SE 

techniques.  Pople and Beveridge [44] present a more detailed discussion of approximate 
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molecular orbital theory than is contained in Stewart's article, but it only considers Pople's 

methods and is older. 

Advances in computers have meant that many "large" polyatomic system as defined 

in the 1960's can now be calculated using ab initio techniques, but SE techniques are still 

widely used. SE techniques can still handle much larger polyatomic systems than ab initio 

techniques. In addition, SE techniques are so much faster than ab initio, one can save a 

considerable amount of time by first performing a SE calculation to obtain a better initial 

guess for an ab initio calculation. However, one source of the speed of SE techniques is 

also the source of the its primary limitation. SE techniques will give good results for con- 

ditions that match the data upon which the particular SE technique was parameterized. 

For example, equilibrium heat of formation is commonly used to parameterize SE tech- 

niques. Away from the equilibrium structure, the predicted heat of formation is suspect. 

Building up a potential energy surface (PES) for a reaction involves deformations far away 

from equilibrium, therefore a SE calculated PES is may not even be qualitatively reli- 

able. Other equilibrium molecular properties not included in the parameterization, such 

as dipole moments, may also be suspect. 

2.2.2 Molecular Mechanics. Molecular Mechanics (MM) is based on a classical 

description of molecules rather than a quantum description. Basically, molecular mechanics 

approximates the N electron M nuclei interaction in the quantum mechanical description 

of a molecule with a sum of effective two, three, and, and four atom interaction within the 

M atom molecule. In MM, the potential energy (PE) of a molecule is thus given by 
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]T V6 PE due to deviations from equilibrium bond lengths 
»=i 

Af-2 
E V» PE due to deviations from equilibrium bond angles 
i=i 

E VT PE due to deviations from equilibrium dihedral angles (2.50) 
i=i 

<f-3 
E Vx        PE due to deviations from equilibrium out of plane bends 

i=l 

M-3 

E 
i=l 

M-3 

i=l 

M 
£ Ki PE due to Van der Waals Interactions 
«=i 

M   AT 
^ j2 Mi.   PE due to Coulomb interactions 

These potential energy terms are uncoupled in that they assume a change in one parameter 

has no effect on another. Coupled potential terms, such as bond-angle and angle-angle 

deviations, may also be added. These potential terms are illustrated in Fig 2.3. As is seen 

in this figure, MM is essentially a "ball and spring" model of molecules, which is much 

easier to understand than the underlying quantum mechanics. The accuracy of a MM 

depends critically on the potentials used to describe the interactions. 

A two atom bonding PES is commonly approximated with the Morse [45] potential, 

which is of the form: 

Vb(rtj) = De[l- Exp [-a (rtj - r*?)}]2. (2.51) 

De is the well depth (dissociation energy plus zero point vibrational energy), r-| is the 

equilibrium separation, and a is the zero crossing point. These parameters are determined 

from spectroscopic data. The Morse potential qualitatively models the interaction of two 

atoms quite well: it's stiffer in compression than extension, it softens out with extension, 

and approaches zero as the separation goes to infinity. Quantitative predictions of a Morse 

potential can be quite good for moderate deviations from the equilibrium separation; how- 
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Figure 2.3    Molecular Mechanics Potential Energy Modes 

ever, quantitative agreement with experiment near the dissociation limit is not as good for 

two main reasons. First, the Morse potential parameters are based on equilibrium data, 

i.e., there isn't enough mathematical flexibility in the Morse potential form to accurately 

describe the whole range of atom separations. Second, experimental spectroscopic data 

for extreme atom separations is exceptionally difficult to obtain. Unfortunately, this poor 

behavior near dissociation limits the utility of a Morse potential to describe chemical re- 

actions. This behavior can be improved by using a linear combination of Morse functions. 

Another common two body potential is the familiar Hooke's law expression for a 

harmonic oscillator: 

Vb(rij)=Ub(rij-r%)2 (2.52) 

where rlj is the equilibrium separation for bodies i and j. A comparison of a Morse and 

Harmonic potentials is shown in Figure 2.4. For small deviations from equilibrium, the 

Morse and Harmonic potentials agree quite well.   However, the dissociation behavior of 
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the Harmonic potential is qualitatively wrong, as a harmonic oscillator never dissociates. 

While the Morse potential is a much better model of two atom interactions, harmonic 

potentials are more commonly used in MM because they can be evaluated much faster, 

significantly decreasing computation times. 

Figure 2.4    Comparison of Morse and Harmonic Potentials. 

Harmonic potentials are also generally used for bond angle changes and out-of-plane 

bends.   Changes in dihedral angle are commonly represented by a Fourier series of the 

form: 

(2.53) Vr = i;^[l + (-ir1coB(ir) 
3 

Here VT is the rotation barrier height, r is the dihedral angle, and j is the periodicity. The 

nonbonding interactions between atoms, i.e. van der Waals interactions, are commonly 

represented by a Lennard-Jones PES, 

'nbyij) — 4£jj 

12 
(J:. 

(2.54) 

where e^ is the potential well depth, a{j is the Lennard-Jones diameter, and r2J- is the sepa- 

ration between atoms i and j. The coulombic potential energy can be used to represent the 

interaction between the effective charges on the nuclei (ionic bonding) or the interactions 
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between bond dipoles. Coulomb potentials are of the form 

^ = £E-if7> (2-55) 
«=i j>i e\Kij\ 

qi is the net charge on atom i (not the nuclear charge), % is the separation between 

atoms i and j which are not also described by an atom pair bonding potential, and e is the 

dielectric constant of the medium in question 

The minimum energy configuration of a collection of molecules or atoms is determined 

by minimizing the gradient of the system with respect to the atomic positions. Numerous 

schemes exist to perform this minimization. A good review of current methods is given by 

Schlick [46]. 

MM techniques have a number of significant limitations. First, the "bonded" poten- 

tials used in MM are good approximations for molecular behavior only for small deviations 

from equilibrium. Chemical reactions cannot be reliably modeled. Second, without an ex- 

plicit description of the electrons, electronic properties cannot be calculated. Lastly, the 

two, three, and four-body potentials are often extremely situation specific, so specific that 

one almost needs to know the answer in order to select the appropriate potentials to use in 

the problem. A simple example of this limitation is calculating the minimum energy struc- 

ture of acetylene. It is known from ab initio quantum calculations that the carbon-carbon 

bond in acetylene is the sp hybrid. In an MM calculation, one must define the types of 

interactions between all atoms in advance. In order to obtain the correct structure for 

acetylene, the C-C interaction must be described with the sp interaction potential. One 

could also obtain a converged MM result for acetylene using the sp2 or sp3 potential C-C 

interaction potentials, though this converged result would be wrong. In contrast, for an 

ab initio calculation one would merely specify two carbon atoms and two hydrogen atoms 

in an approximate equilibrium configuration. The description of the C-C bonding would 

be a result of the electronic wavefunction solution, not an assumption made in advance of 

the calculation. 

Alternate sets of interaction potentials have been formulated for specific problems. 

Stillinger and Weber [47] developed a set of two and three-body interaction potentials for 
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silicon and fluorine to investigate the problem of fluorination of silicon surfaces. Their 

potential reproduced the behavior of solid silicon, adsorbed molecules, and volatile species 

desorbed from the surface. These potentials, and variations of the Stillinger-Weber poten- 

tial forms, have been used by other researchers for silicon and other surface investigations. 

The greatest advantage of MM techniques is that the inherent simplicity of the clas- 

sical mechanical description of atomic interactions enables calculations on systems with 

huge numbers of atoms. A representative calculation of crack formation and propagation 

in silicon nitride used a cluster of 100,000 atoms [48]. A cluster of this size is large enough 

to give a good representation of the mechanical behavior of the bulk material. 

2.2.3 Density Functional Theory. Density Functional Theory (DFT) is an al- 

ternative "first principles" model for describing the electronic structure and properties of 

matter. In quantum mechanics, the quantity of interest is the wavefunction, which cannot 

be directly observed. The total energy is defined as a functional of this wavefunction, and 

a variational minimization yields a procedure to determine the minimum energy approx- 

imate wavefunction. In DFT, the quantity of interest is the electron density, p (r) which 

is directly observable. The total energy can be defined as a functional of electron density, 

and a variational minimization again yields a procedure to determine the minimum energy 

electron density [49]. 

Models describing the energy as a functional of electron density date back to the 

earliest days of quantum mechanics. These developments proceeded without a rigorous 

mathematical justification that such a functional existed. These early models were all based 

on the simple assumption of a uniform density electron gas, and were unable to provide 

accurate electron densities for chemical systems because of this inappropriate assumption. 

Perhaps the best known of these models is the Thomas-Fermi (TF) model developed for 

atoms [50, 51]. A consequence of the assumption of uniform electron density was that the 

limiting behavior of the TF model is qualitatively wrong. The TF density does not decay 

exponentially as r -» oo, and the electron density approaches oo as r -> 0. It was later 

shown that the TF model becomes exact in the limit that the number of electrons N -+ oo. 
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In 1964 Hohenberg and Kohn proved rigorously that DFT is an exact theory for 

describing the electronic structure of matter [52]. They proved 

There exists a variational principle in terms of the electron density which deter- 
mines the ground state energy and electron density. Further, the ground state 
electron density determines the external potential, within an additive constant. 

The optimum ground state electron density distribution is obtained from the func- 

tional variation 

6{E[p,u]-ii(JpdT-N)} = 0, (2.56) 

where E[p, v] is the ground state energy as a functional of both the electron density p and 

an external potential v, p (the chemical potential) is a Lagrange multiplier introduced from 

the constraint of conservation of number of particles, and N is the number of electrons. 

The solution of the resulting Euler-Lagrange equation, 

{^r)r»' (2'57) 

determines the ground state energy density and all the ground state properties of the 

system. Eq 2.57 is the DFT counterpart to the Schrödinger equation. The functional for 

the ground state energy can be partitioned as 

E[p,v] = F[p] + jpvdT, (2.58) 

where F[p] is a universal functional that contains kinetic and potential energy contributions 

F[p]   =   T[p]   +   Vee[p] (259) 

=   T[p]   +    J[p]    +   Vxc[p\. 

T[p] is a universal kinetic energy functional, J[p] is a Coulomb interaction functional, and 

Vxc[p] is an electron exchange-correlation functional, much like the terms we saw in the 

HF-SCF Hamiltonian. At this point in the development of DFT, only a lack of exact forms 

of T[p] and Vxc[p\ stood in the way of a practical implementation of DFT. 
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While this proof by Hohenberg and Kohn is extremely important, placing DFT on 

the same theoretical footing as the Schrödinger formalism, it is important to note that 

they proved the existence of a solution, but did not provide this solution. At this point, 

the absence of exact forms for the kinetic energy and exchange-correlation functionals 

precluded the development of a practical implementation of DFT. However, only one year 

after this initial proof, Kohn and Sham [53] solved half of this problem. The Kohn-Sham 

(KS) implementation of DFT is based on an orbital density description that removes the 

necessity of knowing the exact form of the kinetic energy functional T[p]. K-S focused on 

the kinetic energy of a noninteracting system of electrons as a functional of single-particle 

orbitals that give the exact density. Levy [54] subsequently developed a constrained search 

formulation of KS theory in which the kinetic energy of a noninteracting system of electrons 

is minimized with respect to a set of single-particle orbitals subject to the constraint that 

the orbitals are orthonormal and the sum of the squares of the orbitals give the exact 

ground state density. A time dependent formulation of KS theory is also possible within 

this constrained search framework [55]. 

While the K-S formalism removes the requirement for a universal kinetic energy 

functional, unfortunately, it does not remove the requirement for a universal exchange- 

correlation functional, Vxc[p). Thus, the ability of the K-S formalism to yield quantitative 

results for calculated structures and properties of molecules is directly related to the accu- 

racy of the approximation used for Exc[p], the exchange-correlation energy. Fortunately, 

reasonable approximations for Exc[p] have been developed [56, 57]. The consequence of 

using an approximation for Exc[p\ is that the theory is no longer variational with respect 

to the true ground state energy. KS theory is variational with respect to the model system 

described by the approximate Exc[p]. 

Since approximations for Exc[p] are made by fitting calculations to experimental 

data, it is unclear if DFT should be categorized as an ab initio or semiempirical approach. 

Ab initio HF-SCF doesn't approximate terms in the electronic Hamiltonian, but does use 

basis sets that contain parameters optimized for specific elements. Semiempirical HF-SCF 

approximates the Hamiltonian by throwing away various two electron interaction terms 

to save time and seeks to correct this omission by adding optimizable functional forms 
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that do not have a direct physical interpretation. In comparison, all the terms in the KS 

implementation of DFT have a physical interpretation, though an analytic form for Vxc is 

not known so an approximation to this term based on experimental data must be used. 

Since all the terms in a DFT calculation have a clear, physical interpretation, DFT is best 

categorized as an ab initio theory with a semiempirical implementation. 

The method of solution for KS DFT is very similar to HF-SCF. An approximate form 

of the electron density is expressed as a linear combination of basis functions. An iterative 

procedure is then applied to optimize the coefficients of the basis functions to provide the 

lowest energy electron density. As in HF-SCF, Gaussian basis functions are commonly 

used because of their favorable integration properties. Since a finite basis approach is 

used for both HF-SCF and DFT, a mangos to mangos comparison of their computational 

cost can be made. The computational cost of an HF-SCF computation, without correlation 

correction, scales as n4 (n3 for large systems), where n is the number of basis functions. The 

computational cost of approaches that include correlation corrections such as perturbation 

methods (MP2, MP4) and configuration interaction typically scale as nl where t > 5 

The computational cost of DFT scales as n4 while predicting some molecular properties 

with an accuracy comparable to a large basis set MP2 calculation, depending on which 

approximation to the exchange-correlational functional is used. No functional provodes 

this level of accuracy for all molecular properties. 

Car and Parrinello [58] developed a computationally efficient unified scheme that 

combines molecular dynamics and DFT. They treated minimization of the energy of the 

KS functional as a complex minimization problem which could be solved using the concept 

of simulated annealing. Instead of the common simulated annealing strategy based on the 

Metropolis Monte Carlo algorithm, Car and Parrinello used a simulated annealing approach 

based on molecular dynamics. This approach speeds up the minimization procedure and 

also allows the study of finite-temperature properties. The Car and Parrinello approach is 

very commonly applied to simulations of surface reactions where its efficiency enables the 

use of a large number of atoms in the surface. 

2-39 



2.3   Discussion 

DFT has seen widspread use in surface structure calculations because of its computa- 

tional efficienvy; however, DFT has a number of significant limitations. DFT's description 

of atom interactions depends critically on the fit of the exchange-correlation functional to 

empirical data, so the reliability of a specific DFT functional is really limited to the data 

set from which it was derived. Unlike wavefunction based approaches, there is currently no 

systematic way to improve a DFT calculation by increasing the size of the basis set or us- 

ing techniques analogous to post Hartree-Fock limit calculations. Very recently, alternate 

computation methods for HF-SCF have demonstrated linear scaling of computation time 

with number of basis functions [59, 60]. These techniques make large scale HF-SCF cal- 

culations competitive with DFT, and the stratgies used to speed up HF-SCF calculations 

can likely be adapted for methods that include correlation. 
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III.   Merging Molecular Mechanics with Quantum Mechanics 

3.1    Introduction 

In spite of the progress made in ab initio quantum mechanics (QM) computational 

techniques, many molecular systems are still too large for full quantum mechanical treat- 

ments. Molecular mechanics (MM) methods give good results in predicting molecular 

structure and are fast enough to model very large systems [61]; however, MM potential 

functions are inadequate for describing chemical bond breaking or making. To get a good 

description of bond making and breaking, many researchers perform quantum mechanical 

calculations on smaller molecules that resemble pieces of interest of the large system, e.g., 

the reactive site on a surface. However, it is often difficult to draw conclusions about the 

behavior of large molecules from these small molecule models because they do not accu- 

rately represent the environment, mechanical and electronic, within the large molecule. 

A solution to this problem that is becoming increasingly popular is to combine QM with 

MM. One partitions a large molecule into a small region of interest modeled with quantum 

mechanics under the influence of a larger region modeled with MM [62, 63, 64, 11, 4, 65]. 

In this work, the small region is called the embedded cluster (EC), the large region is called 

the bulk cluster (BC), and the two regions together called a hybrid cluster. 

These hybrid QM/MM methods differ in two main areas: the types of interactions 

between the bulk and embedded clusters, and the way the boundary between the embedded 

and bulk clusters is treated. The QM/MM interactions primarily include polarization of 

the electron distribution of the embedded cluster by the electrostatic potential of the 

bulk cluster, and mechanical forces on the embedded cluster from the bulk cluster. The 

boundary between the embedded and bulk clusters cuts across chemical bonds. Cutting 

these chemical bonds leaves dangling bonds at the boundary of the embedded cluster, which 

have to be terminated in some manner to create a realistic model for the QM description 

of the embedded cluster [66]. (Alternate embedded cluster termination approaches that 

give a better representation of the electronic environment of a large molecule are discussed 

in Chapter IV.) Various methods are used to link the embedded and bulk clusters. 
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The first part of this chapter discusses modifications to the Integrated Molecular 

Orbital (QM) Molecular Mechanics (IMOMM) method of Maseras and Morokuma [4] to 

enable hybrid modeling of surfaces. This modified IMOMM technique (MIMOMM) was 

implemented using the quantum chemistry code GAMESS [9], and the molecular mechan- 

ics code MM3 [6]. In IMOMM, MM forces (energy gradients) from the bulk cluster are 

used to augment QM forces on the embedded cluster, and this hybrid QM/MM gradient 

is used in the QM optimization of the embedded cluster. The method used to link the 

embedded and bulk clusters in IMOMM is unsuitable for hybrid clusters used to model 

surfaces, so a new linking method was developed. In addition, the hybrid QM/MM op- 

timization method of Weiner et al. [11] was also implemented (in GAMESS and MM3) 

and compared to MIMOMM. In Weiner's method, the influence of the bulk cluster on the 

embedded cluster is communicated by using the MM portion of the hybrid optimization to 

determine the positions of the outermost atoms in the embedded cluster. The positions of 

these outermost atoms are then fixed in the QM portion of the hybrid optimization. The 

results of MIMOMM and Weiner's method are compared to each other and to full QM 

optimizations on some silicon cluster test cases. 

Small molecular clusters have often been been used to represent surfaces of bulk 

materials because the size and computational cost of ab initio QM techniques restricts 

their application to small systems. The second half of this chapter investigates the ability 

of small silicon clusters to represent dimer formation on the silicon(OOl) surface. The 

effect of adding a representation of mechanical effects of an extended is investigated using 

MIMOMM. It was found that the particular model silicon cluster investigated actually gives 

a quite good representation of surface dimerization. While MIMOMM doesn't provide a 

qualitative improvement in the optimized geometry of the cluster, one can obtain useful 

insight in designing small clusters to model surfaces of bulk materials. 

3.2    Construction of the Hybrid System 

Since various portions of the hybrid systems are modeled differently, the first step in 

setting up a hybrid optimization is partitioning the system into regions. Figures 3.1 and 

3.2 show the partitioning of a silicon carbide QM/MM hybrid model system needed to 
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apply IMOMM, the hybrid optimization technique of Maseras et al. [4] (the terminology 

used in this section is based on this reference). 

Region Region Region 
4 3 1 

i 

Region Region 
3 4 

Figure 3.1    Hybrid system partitioning, IMOMM. 

Region 2        Region 1 

Si, 

Figure 3.2    Embedded cluster partitioning, IMOMM. 

The embedded cluster that is modeled in the ab initio code is composed of Region 1 

and Region 2 atoms. Region 1 atoms make up the site of interest, for example, a reactive 

site on the SiC surface. Region 1 atoms are present in both the ab initio EC and the MM 

full system. Region 1 atoms are unconstrained in the ab initio portion of the optimization 

process. Region 2 and Region 3 define the linkage between embedded cluster and the 

bulk cluster in the hybrid cluster. Region 2 atoms are present only in the EC, and are 

replaced by Region 3 atoms in the MM bulk cluster. Region 2 is made up of atoms, 

generally hydrogen, that are used only to terminate Region 1 atoms in the model system. 

Region 3 is made up of bulk cluster atoms, Si or C in this SiC example. Region 2 atoms 
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stand-in for Region 3 atoms in the ab initio portion of the hybrid optimization process 

(HOP), and have been referred to as link atoms or junction dummy atoms [67, 68]. The 

positions of the Region 3 atoms are frozen in the MM portion of IMOMM, and so their 

positions are determined from the positions of the Region 2 atoms in the ab initio portion 

of IMOMM. Other hybrid QM/MM schemes have allowed the Region 3 atoms to move in 

the MM portion of the HOP, which means that the positions of Region 2 are determined 

by the MM portion of the hybrid QM/MM optimization [11]. Both approaches have been 

implemented in this work. 

A limitation of IMOMM is that both the Region 2 and Region 3 atom positions are 

determined by the user, not by energy and gradient minimization. This limitation can be 

overcome by creating a new set of atoms and using a new partitioning scheme, illustrated 

in Figure 3.3 and Figure 3.4, which eliminates Regions 2 and 3. In this new approach, 

Region 1 in the embedded cluster is expanded and terminated by Region 5 H atoms, which 

have no equivalents in the bulk cluster. Region 3 is eliminated from the bulk cluster, which 

is now composed exclusively of Region 4 atoms. In the QM portion of IMOMM, Regions 1 

and 5 are optimized without constraints. In making the transition from the QM to the MM 

portions of IMOMM, Region 5 atoms are removed from the model, and Region 1 is now 

directly connected to Region 4. In the MM portion of IMOMM, Region 4 freely optimizes 

around a frozen Region 1, so the MM gradient on the Region 4 atoms is zero. The MM 

gradient on Region 1 atoms arising from Region 4-Region 1 interactions is non-zero since 

the Region 1 atom positions are frozen. (MM intra Region 1 interactions are neglected 

as these are already calculated in the ab initio portion of IMOMM.) This gradient on the 

Region 1 atoms is added to the QM intra-Region 1 gradient, and passed back to the QM 

portion of IMOMM. Region 5 is reattached to Region 1 to saturate the dangling bonds, 

and the QM optimization of Region 1 proceeds with the hybrid gradient. We call this new 

method MIMOMM for "modified" IMOMM. 

Region 5 termination is also easier to define in some lattice-like hybrid clusters. 

Figure 3.5 shows the Si6Hi27Si9H12 hybrid cluster. Here, atoms 3 and 5 (4 and 6) in Region 

1 are both connected to atom 7 (8) in Region 3. This means that two atoms in Region 2 

correspond to one atom in Region 3. In the original IMOMM procedure, the position of 
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Figure 3.3    Hybrid system partitioning, modified IMOMM (MIMOMM). 

Figure 3.4    Embedded cluster partitioning, modified IMOMM (MIMOMM). 

atom 7 would be determined by a simple translation of the Region 2 atom connected to 

atom 3. However, there is no guarantee that this position for atom 7 will be the same as the 

position obtained by a translation of the Region 2 atom connected to atom 5. Getting the 

correct position of atom 7 relative to atoms 3 and 5 is crucial, because all three atoms are 

fixed in the MM portion of IMOMM. The Region 4 optimization around the frozen Regions 

1 and 3 would be affected, and would pass back a "corrupted" MM gradient on Region 1. 

This would eventually cause the IMOMM optimization to diverge. Additional constraints 

would have to be imposed to insure that atom 7 is properly positioned with respect to both 

atoms 3 and 5, increasing the user's bias imposed on the optimized result. The preferred 

solution is to use a larger embedded cluster in which Region 2 does have a one-to-one 
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correspondence to Region 3. Unfortunately, this will increase the computational cost since 

the cost of the HOP is really driven by the size of the ab initio part of the calculation. 

1 

|  Region 1 

Region 2 K J 1 J  8   Re9ion3 

Region 4 

Figure 3.5    Limitation of IMOMM Region 2-3 linking. For this case, there is not a 1 to 1 
correspondence between the Region 2 atoms and Region 3 atoms (7,8) 

Using Region 5 termination for this same situation, atom 7 becomes part of Region 4. 

As Regions 2 and 3 are not denned when Region 5 is used, the problem of a non one-to-one 

correspondence between Regions 2 and 3 never arises. 

To summarize the overall procedure of specifying a hybrid system, the following steps 

are described in terms of a hybrid model of a crystalline surface, though IMOMM has a 

much broader range of applications: 

• Define a cluster large enough to give a good representation of the steric environment 
of the lattice. This initial cluster will be partitioned to form the hybrid cluster 

• Perform a MM optimization of this cluster. This initial MM optimization aligns the 
cluster in principle axis coordinates, and gives a good initial geometry for the bulk 
portion of the hybrid cluster 

• Partition the cluster into Regions 1,3, and 4 (IMOMM), or 1 and 4 (MIMMOM) 

• Determine the positions of the Region 1 terminating atoms, using either Region 2-3 
in IMOMM, or Region 5 in MIMOMM 
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3.3    The Hybrid Optimization Procedure 

3.3.1    Formal Derivation of Hybrid Energy and Gradient Equations. 

In IMOMM, the atomic positions of the Region 3 atoms depend on Region 1 and 

Region 2 

R3 = R3(RUR2) (3.1) 

Using Eq3.1, the total energy of the system, the sum of the ab initio (AI) and MM cluster 

energies, can be written as 

EAI - EAI(Ri,R2), (3.2) 

EMM = EMM{R\, RZ{R\-> R2), R4) = EMM(RI,R2,R4), (3-3) 

ET = EAi + EMM — ET(Ri,R2, -ß4). (3.4) 

Applying the chain rule to the calculation of the gradients 

dET _ dEAi     dEMM  . >p 9EMM 9R3 ,     . 

dRy   ~    8Ry dRy ^     8R3     8Ry 

dET _ dEAi     y—*, BEMM 9R3 ,„ „s 

dR2       dR2      Y   dR3  8R2 

8ET     9EMM (3.7) 
dR4        dR4 

In IMOMM, the bond separations r12 and f13 are frozen at some reasonable user 

selected value. (For a hybrid silicon lattice calculation, r12 would be an Si-H separation, 

while fl3 would be an Si-Si separation.) In addition, the bond and dihedral angles between 

Ry,R2 and Ry,R3 are constrained to be the same. This choice of interfacing the two parts 

of the problem removes the dependence of R3 on Ry, so 

dR3 

dRy 
= 0. (3.8) 
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With the bond distances frozen, and the angles kept the same, 

8R3     = 9EMM     9EMM J^3  _ -f vj-iMM   _   v-^MM /o q\ 

8R2       ' 8R3 dR2 

where 7 is the identity matrix. Using 3.8 and 3.9, Equations 3.5 and 3.6 become 

8ET _ dEAI     dEMM ,3 1Qx 

8RX ~  8RX        8Rl   ' 

8ET _ dEAI     OEMM j-ß -Q\ 

~dR\~  dR2        8R2 

Equations 3.1 through 3.11 define the formal optimization problem for IMOMM. As the 

Region 4 atom positions are allowed to freely optimize in the MM portion of IMOMM, 

Equation  3.7 should go to zero upon optimization. The presence of a residual gradient in 

Region 4 in general will cause the HOP to diverge. 

Equations 3.10 and 3.11 are only valid for internal coordinates, and so the formation 

of the hybrid gradient must be performed using internal coordinates. This requirement of 

using internal coordinates in the hybrid procedure turns out to impose significant practical 

problems in applying this technique to cluster models of surfaces, which are highly coupled 

molecular cages. The problem of constructing "good" sets of internal coordinates for cages 

is discussed in Section 3.4. 

3.3.2 Energy and Gradient Equations using Region 5. The formal HOP is sim- 

plified by using the MIMOMM partitioning scheme developed in this work. Since Regions 

2 and 3 are never specified, terms involving R2 and R3 never appear in the optimization 

problem. We have 
8ET      dEAI  ,  8EMM gi = ^L + "^M, (3.12) 

(3.13) 

(3.14) 

8RX       8RX        8RX 

8ET _ 8EAI 

8R5 ~~  dR5 

8ET      8EMM 

8R4        8R4 
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3.3.3 Double Counting. The goal of IMOMM is to include the steric influence 

of the outer cluster onto the embedded cluster through MM forces (gradients). However, 

Region 1 atoms are present both in the ab initio calculations of the embedded cluster and 

the MM calculations of the bulk cluster, so intra-Region 1 forces would be calculated in 

both the ab initio and MM codes. The intra-Region 1 MM forces need to be zeroed out in 

the MM calculations to avoid this double counting. Maseras et al [4] describe some simple 

tests to determine if a given interaction in the bulk cluster should be added to the MM 

gradient: 

• Interactions involving atoms of Region 1 exclusively are neglected as Region 1 inter- 
actions are already accounted for in the ab initio code 

• Region 1 - Region 3 interactions are neglected in the MM code, with the assumption 
that Region 1 - Region 2 interactions are properly reproduced by Region 1 - Region 
2 interactions in the ab initio code 

• "Non-bonded" (e.g., van der Waal's) interactions between atoms of Region 3 are kept 
in the MM code. These terms are sensitive to the nature of the atom, and are not 
adequately represented by the interactions between the Region 2 atoms (typically H 
atoms) in the ab initio calculation. 

• Any interaction involving one atom of Region 4 is retained 

The original IMOMM scheme used these same rules to modify calculation of the MM 

energy. However, modification of the MM energy calculation is not needed for two reasons. 

First, the atom positions of Regions 1 and 3 are kept fixed in the MM calculation. The 

MM energy from Regions 1 and 3 thus remains constant. Neglecting the appropriate terms 

in the MM energy calculation makes this constant 0, but adding a non-zero constant to an 

energy that is being minimized will not affect convergence. More importantly, in the ab 

initio portion of IMOMM, the geometry is considered optimized when the hybrid gradient 

falls below some tolerance value (typically 5 X 10~5 H/B), not when a criterion based on 

the energy is satisfied. 

3.3.4 An alternate embedding approach: Weiner's method. Weiner et al [11] 

described an alternative approach to embedding a quantum mechanically described cluster 

in a MM bulk. In this approach, the influence of the bulk region on the embedded cluster 

is communicated by the bulk region determining the position of the boundary atoms. That 

is, the Region 3 atom positions are optimized in the MM calculation, and the Region 2 
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IMOMM MIMOMM Weiner 

Rl GAMESS Optimized Optimized Optimized 

Äi MM3 Fixed Fixed Fixed 

R2 Stretch Fixed n/a Fixed 

R2 Bend Optimized n/a Fixed 

R2 Torsion Optimized n/a Fixed 

R3 Positions Fixed n/a Optimized 

R4 Positions Optimized Optimized Optimized 

R5 Stretch n/a Either Either 

R5 Bend n/a Either Either 

R5 Torsion n/a Either Either 

Ri Gradient AI + MM AI + MM AI only 

Table 3.1    Comparison of constraints on  different  regions of a hybrid optimization. 
Weiner's method may be used with or without Region 5 

atom positions are frozen in the ab initio calculation. Once the optimized Region 3 atom 

positions have been determined in the MM calculation, the Region 2 atoms are placed at 

positions along the Region 1-Region 3 bond directions, with atom separations set at the 

user defined Region 1-Region 2 bond lengths. This is the opposite of the treatment of link 

atoms in IMOMM in which the Region 3 atoms are placed at positions along the Region 1- 

Region 2 bond directions, with the atom separations set at the user defined Region 1- 

Region 3 bond lengths. No gradient information is passed from the MM calculation to the 

ab initio calculation. The influence of the bulk cluster (BC) is limited to determining the 

position of the Region 2 atoms in the ab initio calculation. This approach provides a poorer 

representation of the influence of the bulk cluster on the embedded cluster; however, it is 

a bit faster than IMOMM, easy to implement, and provides additional insight on how to 

best represent the mechanical interactions of the bulk cluster onto the embedded cluster. 

Table 3.1 summarizes the constraints of the atoms in the different regions in the hybrid 

clusters in IMOMM, MIMOMM, and Weiner's method. 

3.4    Internal Coordinates for Cages 

Application of IMOMM requires the specification of a set of internal coordinates 

to add the ab initio and MM gradients.  One need not run the ab initio optimization in 
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internal coordinates, though the MM and ab initio gradients need to be transformed to 

internal coordinates before they are added in the original IMOMM procedure. However, 

transition state searches and general mapping of potential energy surfaces are often aided 

by freezing internal coordinates. Specification of a good set of internal coordinates can 

become a bottleneck in using IMOMM, especially for molecular cage structures. 

The optimization of the (potential) energy of a molecule is typically performed using 

some type of second-order Newton-Raphson minimization technique. (See Reference [46] 

for a detailed discussion of the optimization problem in computational procedures.) Thus, 

in principle one needs the energy, the gradient of the energy with respect to nuclear posi- 

tions, and the second derivative, the Hessian matrix, at each molecular configuration in the 

optimization process. If the coordinates used to specify the molecular structure are orthog- 

onal, a displacement along one coordinate will not change the energy contribution from 

another coordinate, producing the most direct search path (fewest optimization steps) to a 

minimum on the potential energy surface (PES). In general, the coordinates used to specify 

the molecular geometry are coupled to some degree. However, a good choice of coordinates 

leads to a diagonal dominant Hessian, which minimizes the number of optimization steps. 

Here are a number of commonly used coordinate systems. 

Cartesian Simplest choice to specify. A molecule has 3N Cartesian degrees of freedom, 
while a nonlinear molecule only has 3N-6 internal degrees of freedom (6 coordinates 
associated with translation and rotation of the center of mass only affect the net 
molecular kinetic energy), so some method is typically used to remove optimization 
steps that involve center of mass motions. Cartesians typically require the largest 
number of optimization steps because the Hessian in Cartesian coordinates is highly 
coupled. 

Internal Coordinates This type is referred to as model builder or primitive internals, 
and includes stretches, bends, and torsions. They are commonly used because they 
involve natural "chemical" parameters to describe molecular geometry. A good set 
of internal coordinates will produce a diagonal dominant Hessian. 

Symmetry Coordinates This is a general class of coordinates that are linear combina- 
tions of primitive internal coordinates. The secular equation describing the vibra- 
tional energy of a molecule is factored to the maximum extent possible by the use of 
symmetry [69]. 

Normal Mode Coordinates A set of 3N-6 orthogonal coordinates that correspond to 
the spectroscopic normal vibrational modes of a molecule. Because normal modes are 
orthogonal, the Hessian is diagonal, so an optimization in normal mode coordinates 
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is quite efficient. The drawback of normal mode coordinates is that they must be 
calculated, which is often more time consuming than performing an optimization 
using a poorer set of coordinates. 

Natural Internal Coordinates (NIC) These are a type of local symmetry coordinates 
developed by Pulay [70, 71] based on localized normal modes within a molecule. 

Efficiency of geometry optimization, the number of energy and gradient calculations 

needed to find a minimum on the PES, depends sensitively on the choice of coordinates. 

In general, internal coordinates are more efficient than Cartesian coordinates, with Pulay's 

NIC being the most efficient. A molecule has 3N-6 (3N-5 for linear molecules) independent 

degrees of freedom, so one may only specify 3N-6 internal coordinates. One can specify 

very many more than 3N-6 internal coordinates for some highly coupled molecules, e.g., 

molecular cages. It is sometimes impossible to specify a set of 3N-6 primitive internal 

coordinates that will perform well in a geometry optimization. Pulay has developed an 

optimization algorithm that allows the use of more than 3N-6 internal coordinates [72], but 

this algorithm has not been implemented in GAMESS. As the implementation of Pulay's 

redundant optimization scheme would have taken more time than available, an alternate 

approach was used to specify internal coordinates for IMOMM in this study. 

Baker et al have recently described a set of symmetry coordinates that by their 

construction are guaranteed to be orthogonal and non-redundant [10]. To construct their 

coordinates, called delocalized coordinates (DLCs), one first specifies all the possible primi- 

tive internal coordinates for a molecule. The B matrix, the transformation matrix between 

displacements in internal coordinates and Cartesian displacements is first calculated. 

N 

nvar 

3JV 

St = J2Btid, t=l,nvar 

number of atoms in the molecule 

number of internal coordinates specified (> 3N-6) (3.15J 

one of nvar internal coordinates 

one of 3N Cartesian displacements 

The spectroscopic G matrix, 

G = BBT (3.16) 
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is then calculated and diagonalized. Of the nvar eigenvalues of the G matrix, exactly 

3N-6 will be non-zero, corresponding to the 3N-6 independent degrees of freedom of the 

molecule [69]. The eigenvectors of the G matrix are orthonormal by their construction, so 

the eigenvectors of the non-zero eigenvalues of the G matrix for a set of 3N-6 orthogonal 

coordinates are ideal for geometry optimization. Since these coordinates may contain a 

contribution from every primitive internal coordinate specified for the molecule, Baker et al 

named these delocalized Coordinates (DLCs). Two advantages of DLCs are the ease with 

which an automated algorithm for their specification can be written, and their performance 

in optimizations of cage molecules. 

In this work, a simple code to construct DLCs for use with GAMESS was pieced 

together using the subroutines from MM3 that define a set of stretches, angles, and torsions 

and the subroutines from GAMESS that construct the B matrix and diagonalize the G 

matrix. (See Appendix D for more details about the present implementation of DLCs.) 

Some modifications to the GAMESS algorithm to convert displacements in symmetry 

coordinates to displacements in Cartesians were also required. The full functionality of 

DLCs as described in Reference [10] has not yet been implemented, most notably the 

ability to freeze individual primitive internal coordinates, e.g., selected stretches, angles, 

torsions, and combinations thereof. However, IMOMM can be successfully applied to the 

embedded cluster cages investigated in this work using DLCs. 

3.5   Summary of GAMESS/MM3 implementation 

A complete listing of the program modifications required to merge GAMESS with 

MM3 is found in Appendix E. A brief description is presented here. 

3.5.1    Program flow. The overall flow of the MIMOMM hybrid optimization 

procedure using GAMESS and MM3 is (RUNTYP=HYBRID): 

1. Perform the normal GAMESS initialization for a RUNTYP=OPTIMIZE 

2. Call interface module to initialize the HYBRID specific pieces 

(a) Read the $MM3 input file, check for syntax errors 

(b) Calculate the MM3 energy at the initial geometry to check for logical errors in 
the MM3 connected and attached atom definition lists 
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3. Pass control back to GAMESS and begin the optimization sequence 

4. Calculate the GAMESS energy and gradient for Regions 1 and 2 (1 and 5) 

5. Call the interface module 

(a) Convert the coordinates of Region 2 to Region 3 (if required) 

(b) Call MM3 as a subroutine, passing the Region 1 and 3 coordinates as well as 
lists of the atoms in each Region 

(c) Perform MM3 optimization of Region 4 around a frozen Region 1 and 3 using 
gradients modified to zero out inter-Region 1 terms 

(d) Convert the MM3 Cartesian gradient to internal coordinates 

(e) Add the MM3 gradient on Region 1 to the GAMESS gradient on Region 1 to 
form the hybrid gradient 

6. Pass hybrid gradient back into the GAMESS optimization loop 

7. Check for convergence and calculate the next optimization step using the hybrid 
gradient 

8. Repeat until convergence is reached in GAMESS 

The interface between GAMESS and MM3 is performed by a separate code module 

to minimize the changes required to GAMESS. 

The modifications required to implement the HOP in GAMESS are minor. A new 

runtype, HYBRID, is added as an option. The input file for a HYBRID optimization 

contains the normal GAMESS input plus two new groups: a $MM3 group which is a 

standard input file for MM3, as well as a SLINK group which contains information such 

as the hybrid method type, lists of the atoms in each Region, and the bond lengths for 

atoms in Regions 2 and 3 (if used). Depending on which merging procedure is used, 

IMOMM, MIMOMM, or Weiner, various internal coordinates need to be frozen in the 

normal GAMESS input, and various atom position must be frozen (restricted to use the 

MM3 term) in the $MM3 group. 

The modifications required in MM3 are more extensive; however, many of them are 

mostly bookkeeping, i.e. deconflicting COMMON blocks and subroutine names between 

GAMESS and MM3. As MM3 is the (significantly) smaller code, names in MM3 routines 

were changed to resolve the conflicts. MM3 input and output is redirected to GAMESS 

input and output files, and the MM3 output was significantly reduced. (Each step in 

the HOP involves a complete MM3 optimization, which normally produces a large output 
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file. Most of the information in the MM3 output isn't needed in the HOP.) The gradient 

subroutines in MM3 are modified so that only interaction terms that include at least 

one atom in Region 4 contribute to the gradient. The specific modifications are listed in 

Appendix E. 

3.5.2 An example: the Si6H12/Si9H12 hybrid system. The Si6Hi2/Si9H12 hybrid 

cluster is a convenient system to show a representative result of the modified IMOMM 

procedure as implemented in GAMESS using MM3. Figure 3.6 shows the setup of the 

hybrid cluster using Region 5 termination of the embedded cluster. Si6Hi2/Si9H12 is an 

odd case as there are more Region 1 than Region 4 atoms. However, ab initio calcula- 

tions on Si9Hi2 can be readily performed, enabling verification of the hybrid procedure by 

comparison with ab initio results at the same level of theory. 

Table 3.2 shows the result of an MM3 optimization step within the overall hybrid 

optimization procedure in GAMESS. The magnitude of the MM3 Cartesian gradients from 

Region 1-Region 4 interactions (the steric interaction of the BC on the EC), is substantial, 

on the order of 10~3H^ft
r
r
ee. Region 4 is allowed to optimize freely, and we see that the 

magnitude of the MM3 Cartesian gradients in Region 4 is quite small, < 3.4 X 10~7H°^r
r
ee. 

Some of the Region 4 Cartesian gradient projects onto the internal coordinates of Region 

1 in this implementation of IMOMM; however, so long as the Region 4 residual gradient 

is several orders of magnitude smaller than the MM3 Region 3 gradient, this projection is 

unimportant. 

Table 3.3 shows the MM3 Cartesian gradient above converted to internal coordinates 

for Region 1, and added to the GAMESS gradient to form the hybrid gradient. We 

see that the magnitude of the GAMESS and MM3 gradients are actually quite large, 

as much as 0.04 H^r
ee. However, the MM3 and GAMESS gradients are opposite in 

sign so that their sum, the hybrid gradient, satisfies the GAMESS convergence criteria of 

OPTOL=e-5 ggTe • Bohr 

The net effect of the MM3 steric forces is quite dramatic in this example. Figure 3.7 

shows the results of a GVB-PP(l) optimization of Si6Hi2 by itself. All the silicons are 

planar. Figure 3.8 shows the results of the hybrid optimization Si6H12/Si9H12. With the 
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Figure 3.6    Si6H12/Si9H12 embedded (MO) and hybrid (MM) clusters using Region 5 ter- 

mination on the EC. 
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addition of the MM3 steric forces, Si6H12 optimizes to a distinctly non-planar structure, 

which closely resembles the GVB-PP(l) optimized structure of Si9Hi2. Numerical com- 

parisons are shown in Section 3.6. 

Figure 3.7    Si6Hi2   ab   initio  optimized 
geometry 

Figure 3.8    Si6Hi2 MIMOMM optimized 
geometry 

3.6    Comparison of methods 

Table 3.4 shows a comparison of the two hybrid optimization techniques implemented 

in this work. The GVB-PP(l) optimized geometry of Si9H12 is a result that the hybrid 

methods will hopefully reproduce. The MM3 optimized structure for Si9Hi2 predicts a 

dimer length slightly larger than an Si-Si single bond length. The MM3 force field is 

parameterized only for sp3 hybridized silicon, and so is unable to accurately model bonding 

in undercoordinated silicon. The results of both hybrid techniques are similar, and produce 

an Si6H12 structure that is similar to the corresponding structure for these 6 atoms in 

Si9H12. As was shown qualitatively in Section 3.5.2, the hybrid structures for Si6Hi2 are 

very different from the planar optimized structure for Si6Hi2. The differences between 

Weiner's method and MIMOMM are minor for this case. The largest difference is found 

in the last two torsion angles where MIMOMM agrees better with the full ab initio result. 

The differences in bond angles between MIMOMM and the full ab initio result are similar 

to other reported hybrid optimization results [4, 73, 65]. 

The primary advantage of a hybrid ab initio/MM method is that one can substan- 

tially increase the size of the bulk cluster while making minor impacts on the overall 

computational cost. Figure 3.9 shows a more representative hybrid cluster, Si6Hi2 embed- 

ded within Si38H36.  Increasing the bulk cluster size while keeping the embedded cluster 
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MM3 Cartesian Gradient 

Regions 1 and 3 

Atom No X' (H/B) Y' (H/B) Z' (H/B) 

1 .000002684 .009388175 -.009950734 

2 -.000001956 -.009383519 -.009944423 

3 -.002404246 -.009509900 .004962175 

4 .002418841 -.009527420 .004985121 

5 -.002418503 .009521604 .004985008 

6 .002403241 .009510993 .004962602 

Region 4 (residual) 
7 .000000159 .000000000 .000000107 

8 -.000000303 -.000000007 .000000170 

9 .000000042 .000000101 .000000344 

10 -.000000034 .000000000 .000000021 

11 .000000002 -.000000015 -.000000007 

12 .000000013 .000000001 .000000010 

13 -.000000005 -.000000026 -.000000013 

14 -.000000027 .000000002 .000000018 

15 .000000004 .000000037 -.000000016 

16 -.000000001 .000000001 -.000000002 

17 -.000000008 .000000057 -.000000024 

18 -.000000022 .000000004 .000000016 

19 .000000118 -.000000001 -.000000056 

20 -.000000003 .000000009 -.000000217 

21 .000000002 -.000000100 -.000000096 

Table 3.2     MM3 Cartesian Gradient on frozen Region 1 atoms and optimized Region 4 atoms 
taken from a GAMESS .log file for an MIMOMM optimization of Si6H12 embedded in 
Si9Hi2. The Region 4 gradient is < 3.4a;10 -7    Hartree 

Bohr (H/B). 

Internal GAMESS Grad MM3 Grad HYBRID Grad 
Coordinate (H/B, H/R) (H/B, H/R) (H/B, H/R) 

d 2 1 -.00964296 .00964913 .00000618 

d3 1 -.00282949 .00282209 -.00000740 

Z3 1 2 -.04046592 .04044593 -.00001998 

d4 1 -.00283912 .00283360 -.00000552 

Z4 1 2 -.04050295 .04051407 .00001111 

«4123 -.02331093 .02331266 .00000173 

d 52 -.00283716 .00282975 -.00000741 

L 5 2 1 -.04051513 .04049657 -.00001856 

w 5 2 1 3 -.00011002 .00011170 .00000168 

d 6 1 -.00282585 .00282013 -.00000572 

L 6 2 1 -.04044872 .04045985 .00001112 

w 6 2 1 3 .02319669 -.02319692 -.00000023 

Table 3.3 Converged hybrid gradient in internal coordinates taken from a GAMESS .log file 
from a MIMOMM optimization of Si6Hi2 embedded in Si9H12. The ab initio and 
MM3 gradients are quite large, but opposite in sign. 
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Weiner MIMOMM 
Embedded (AI) SieHi2 Si6Hi2 SieHi2 SigHi2 None 

Bulk (MM3) SigHi2 SigHi2 None None SigHi2 
d2 1 2.278 2.261 2.159 2.249 2.376 
d 3 1 2.333 2.338 2.332 2.329 2.352 
d4 1 2.333 2.338 2.332 2.329 2.352 
d52 2.345 2.338 2.332 2.329 2.352 
d62 2.345 2.338 2.322 2.329 2.352 

Z 3 1 2 109.850 108.507 121.672 106.491 103.906 
Z 4 1 2 109.867 108.526 121.672 106.491 103.906 
Z 52 1 109.859 108.513 121.672 106.491 103.906 
Z 6 2 1 109.839 108.494 121.672 106.491 103.906 
Z 3 1 4 112.007 109.287 116.655 111.006 108.461 
Z 5 26 112.034 109.287 116.654 111.006 108.461 

u 3 12 5 0.000 -0.003 0.000 0.000 0.000 
w4 123 123.645 118.654 0.000 118.524 113.414 
w 62 1 5 -123.666 -118.665 0.000 -118.524 -113.414 

Table 3.4    Comparison of embedding schemes on Si6Hi2 embedded cluster.   Ab initio 
calculations are GVB-PP(l), HW ECP basis set. 

constant provides useful insight on how large a bulk cluster is needed to give an accurate 

representation of mechanical environment of the lattice. 

Table 3.5 shows a comparison of the two hybrid methods on the Si6H12/Si38H36 

hybrid cluster. The ab initio calculations were performed using the restricted Hartree 

Fock (RHF) method, which incorrectly models the Si-Si dimer as a double bond. Here 

we see an important difference between Weiner's method and MIMOMM. With Weiner's 

method, MM3 fixes the positions of atoms 3,4,5, and 6, so the only way GAMESS can 

reduce the gradient on the dimer is to elongate that bond. In MIMOMM, MM3 provides 

a force on all 6 atoms that limits their displacements, but the combination of MM3 and 

GAMESS forces allows the structure to relax in a way more consistent with the ab initio 

model of the embedded cluster. 

Use of Weiner's method requires freezing more coordinates in the embedded cluster, 

so that the MM calculation has a greater influence on the embedded cluster than MI- 

MOMM. Weiner's method is also faster than MIMOMM (37 minutes on a Sun Sparc 20 

compared to 107) because only one internal coordinate is relaxed in the Weiner hybrid 

optimization, compared to 12 relaxed internal coordinates for MIMOMM. It is undesir- 
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Figure 3.9    Si6Hi2/Si38H36 hybrid cluster. The Region 1 atoms are highlighted. 

able for the MM bulk cluster to have this much influence on the embedded cluster since 

one considers the ab initio calculation on the embedded cluster to be a better theoretical 

model. 

Weiner et al. applied their merging technique to hybrid clusters for which the em- 

bedded cluster was quite large, around 40 heavy atoms (a semiempirical method was used 

for the embedded cluster because of its size). The boundary of an embedded cluster this 

large is far enough away from the site of interest that the QM calculation still dominates. 

For smaller embedded clusters, the MM determined positions of the boundary atoms can 

dominate the ab initio model of the embedded cluster, so MIMOMM seems to be a better 

approach than Weiner. 
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WEINER MIMOMM 

Embedded (AI) Si6Hi2 Si6H12 Si6H12 Si3sH36 None 

Bulk (MM3) Si38H36 S138H36 None None S138H36 

d2 1 2.257 2.174 2.159 2.180 2.370 

d3 1 2.373 2.337 2.322 2.338 2.350 

d4 1 2.373 2.337 2.322 2.338 2.350 

d5 2 2.373 2.337 2.322 2.338 2.350 

d6 2 2.373 2.337 2.322 2.338 2.350 

Z 3 1 2 106.244 109.333 121.672 107.005 104.252 

Z 4 1 2 106.244 109.343 121.672 107.005 104.252 

Z 5 2 1 106.244 109.340 121.672 107.005 104.252 

Z 6 2 1 106.244 109.328 121.672 107.005 104.252 

Z 3 14 111.444 117.683 116.655 119.100 112.858 

Z 5 26 111.246 117.651 116.654 119.100 112.858 

w3125 0.000 -0.005 0.000 0.000 0.000 

w4123 118.557 130.162 0.000 128.707 118.557 

w 62 1 5 -118.557 -130.115 0.000 -128.707 -118.557 

Table 3.5    Comparison of embedding schemes on Si6H12/Si38H36 hybrid cluster. Ab initio 
calculations are RHF, HW ECP basis set. 
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3.7   Models of the Dimerized Si(OOl) Surface 

3.7.1 Low Index Surfaces of a Cubic Lattice. The goal of this research is to use 

MIMOMM to investigate the chemistry of SiC(lll) surfaces, so before we discuss calcu- 

lations on hybrid cluster models of silicon surfaces, a brief description of the terminology 

used to describe is helpful. (See References [74, 75] for more complete discussions.) There 

are 14 unique 3-D Bravais lattice types. These lattice types are specified in terms of the 

atom spacing along 3 axes, d[, a~2, and a3 and the angles between the axes, a, ß, and 

7. Distance along each axis is specified in terms of atom spacing, e.g., ax is the distance 

between two adjacent atoms in the d[ direction. For the three cubic Bravais lattices, cubic, 

body-centered cubic (bcc), and face-centered cubic (fee): 

ax = a2 = a3, 

a = /3 = 7 = 90°. 

Silicon, diamond, and silicon carbide are all fee lattices, the only differences among the 

three are the bond lengths: 2.35 Ä for silicon, 1.54 Ä for diamond, and 1.89 A for silicon 

carbide. A surface is created by cleaving the crystal in a plane. The orientation of a 

crystal plane is determined by three points in the plane, provided they are not collinear. 

The specification of the plane is determined by where this plane intercepts the au a2, and 

a~3 axes. If each point lay on a different crystal axis, the plane could be specified by giving 

coordinates of the point in terms of the lattice constants ai, a2, and a3. However, for 

structure analysis it is more useful to specify the orientation of the plane determined by 

the following rules: 

• Find the intercepts of the plane in terms of the lattice constants au a2, a3. If the 
plane is parallel to one of the axes, the intercept is taken to be at 00 

• Take the reciprocal of these numbers and reduce these 3 to the smallest three integers 
having the same ratio. The result, enclosed in parentheses (hkl), is called the index 
of the plane. 

This procedure is illustrated in Figure 3.10. Here, we have a plane intercepting the 

ax,a2,a3 axes at 3ai, 2a2, and 2a2. The reciprocals of these numbers are |, |, \ The three 

smallest integers having this ratio are 2,3,3, so the indices for this plane are (233). If 

a plane intercepts an axis on the negative side of the origin, the corresponding index is 
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negative, which is indicated by placing a minus sign above that index: (hkl). The cube 

faces of the cubic crystal are (100), (010), (001), (TOO), (010), and (OOT). The (001), (110), 

and (111) planes of the cubic lattice are shown in Figure 3.11 

For silicon semiconductor devices, the (001) surface is most commonly used in device 

fabrication. For silicon carbide, the (111) surface is of highest interest. Figure 3.12 shows a 

portion of the SiC lattice lattice, cleaved along the (001) and (111) directions, to highlight 

the initial positions of the atoms on these surfaces. (The presence of dangling bonds on the 

surface atoms means they are very reactive, and depending on the surface, often forming 

bonds each other. The movement of the surface atoms away from their lattice positions is 

known as reconstruction.) The (001) surface has been well characterized experimentally 

and theoretically, making it a good case to benchmark the modified IMOMM procedure. 

3.7.2 Previous Cluster Models of the dimerized Si(OOl) surface. The dimerized 

silicon (001) surface is of high technological interest in device fabrication, and has been the 

subject of numerous theoretical and experimental studies [8, 31, 76, 77, 78] to name a few. 

Comprehensive reviews of silicon surfaces and surface chemistry are given by Haneman [79] 

and Neergard and Yates [80]. Figure 3.13 shows an illustration of the dimerization of the 

unreconstructed silicon surface. Consider a piece of crystalline silicon which has been 

cleaved parallel to the (001) crystal axis. Initially, the two surface silicon atoms (Layer 1 

in Figure 3.13 are 3.84 A apart, and each have two dangling bonds that had been involved 

in bonding with Layer 0 before cleavage. As is shown in Figure 3.13, the orientation of two 

of these dangling bonds is favorable for bond formation between the two surface silicon 

atoms. After the dimer bond is formed, the separation between the surface atoms shrinks 

by nearly 1.5 Ä to approximately the Si lattice bond distance of 2.35 Ä. The effect of this 

large atom displacement on the surface propagates several layers down into the lattice. 

An alternate configuration for a silicon surface dimer, the buckled dimer, is also 

shown in Figure 3.13 ( A wide range of values have been reported experimentally for the 

1-1 length of the buckled dimer, though most report a value greater than the Si-Si bulk 

separation of 2.35A. A consensus on the minimum energy reconstruction of the dimerized 

Si(OOl) surface does not exist, though the majority of references tend to favor buckling [80]. 
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Figure 3.10    Determination of the indices of a lattice surface plane. The plane shown has 
intercepts of 3ßi, 2a2, and 2«3, resulting in plane indices of (233). 

(001) (111) 

(110) 

Figure 3.11    The (001), (110), and (111) planes of a cubic lattice. 
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(001) Lattice Directions 

(001) 

(in) 

*- (010) 

Figure 3.12 Section of an ideal tetrahedrally bonded cubic lattice showing three low index 
surfaces. Coplanar atoms are shown as the same size. The two planes shown 
parallel to the page are the (110) surface. The bonds drawn as tapering make 
on angle of 57.7° with the plane of the page. Dangling bonds are correctly 
indicated for the two ideal surfaces labeled. Each (110) surface atom also has 
a fourth bond, at a tetrahedral angle to the other three, to an atom above 
or below the (110) planes that is not shown. For bulk silicon and diamond, 
atoms would be either all Si or C. 
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Figure 3.13    Dimerization of a silicon (001) surface. The arrows indicate the direction of 
atom displacements induced by the formation of the surface dimer. 

3-26 



Most experimental references report some degree of buckling on the surface, while most 

theoretical work has focused on the symmetric dimer configuration. Goddard first reported 

that the lowest energy configuration for a dimer in a small silicon cluster model, Si9H12 

shown in Figure 3.14, is the symmetric geometry [81]. The proper description of the 

symmetric dimer is a singlet biradical, so the lowest simplest ab initio theory required to 

accurately model the dimer is GVB-PP(l). 

Figure 3.14    Si9H12 model of a single dimer on a Si(OOl) surface 

Si9H12 has been commonly used as a model of the dimerized Si(OOl) surface because 

it is large enough to contain a silicon dimer, yet small enough to be readily modeled 

with ab initio methods (including electron correlation). However, Si9Hi2 has two primary 

limitations as a model for a silicon surface. First, it seems rather small to accurately 

represent the steric effects of bulk silicon Second, it contains more hydrogen than silicon 

atoms, so one might suspect that the chemistry of this cluster is dominated by the hydrogen 

termination. 

The dimer bond length would seem to be a simple measure of the ability of a small 

silicon cluster to model an actual surface dimer. Even for the symmetric geometry, reported 

values for the dimer length vary substantially. Table 3.6 lists a number of computational 

results for the length of silicon surface dimer in Si9H12.(The calculations listed in this table 

that were performed in this work will be discussed in Section 3.7.3.) In Table 3.6, we see 
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Reference Method Basis Set Subsurface Termination Length (1) 

This work 
This work 
This work 

RHF 
TCSCF 

GVB-PP(l) 

HW ECP(d) 
HW ECP(d) 

6-31G* 

Optimized 
Optimized 
Optimized 

H 
H 
H 

2.18 
2.24 
2.28 

[8] GVB-PP(2) ECP(d) 
(dimer) 

Optimized H 2.25 

[82] DFT n/a Optimized n/a 2.23 

[83] TCSCF DZP 
(dimer) 

Fixed 
(lattice) 

H 2.32 

[84] CI Dunning [85] 
(dimer) 

Fixed 
(lattice) 

H 2.40 

[81] GVB-PP(2) ECP(d) 
(dimer) 

Fixed 
(lattice) 

H 2.47 

S166H52 

This work 
GVB-PP(l) HW ECP(d) 

Sis 
Optimized Si 2.27 

[86] Experiment n/a n/a n/a 2.26± 0.1 

Table 3.6    Comparison of symmetric dimer length in Si9H12. The bulk lattice Si-Si sepa- 
ration is 2.35 1. 

that an incorrect RHF model of the dimer produces a Si-Si double bond, resulting in a 

dimer separation of 2.181. The TCSCF result from this work and Carter's GVB-PP(2) 

are from unconstrained optimizations of the entire Si9H12 cluster (SigHu in Carter's case). 

(H refers to an artificial hydrogen atom that is discussed in Chapter IV.) Modeled as a 

singlet biradical, the Si dimer length of 2.251 is roughly halfway between the RHF result 

of 2.181 and the Si-Si bond length in bulk silicon of 2.351. The DFT result [82] was 

calculated using a periodic, 2-D slab calculation. This slab model should insure a good 

representation of the steric constraints of bulk silicon. Other similar DFT slab calculations 

also report a symmetric silicon dimer bond length around 2.261. 

The ability of Si9Hi2 to accurately model the steric effects of bulk silicon is ques- 

tionable. One method to make Si9H12 behave more like the bulk material is to fix all 

the silicon atoms in lattice positions except the 2 atoms in the dimer,. which are allowed 

to move freely. This approach was used by Nachtigall et al [83], Whitten et al [87], and 

Redondo and Goddard [81]. Nachtigall et al [83] used Si9H12, while Jing and Whitten [87] 

used a slightly larger silicon cluster, Sii2H20. Redondo and Goddard [81] used Si9i7i2, with 

the subsurface silicon atoms and the H atoms fixed at silicon lattice positions. We see in 
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Table 3.6 that the dimer length in the models which fixed the subsurface atoms are con- 

sistently longer than the dimer lengths calculated without constraints on the subsurface 

atoms, and longer than Wang's experimental result of 2.26± 0.1Ä. The Si66H52 cluster 

modeled in this work is an attempt to provide a better representation of the bulk silicon 

without having to resort to fixing atom positions. The singlet biradical model for this 

case results in a dimer length of 2.272, which is more consistent with the unconstrained 

optimized results from the small silicon clusters, and with the experimental result. 

Which of these results is best? Most of the results in Table 3.6 fall within the 

uncertainty of Wang et al's measurement, so based only on the dimer length it's difficult to 

judge which one is better than the other.(The relatively large uncertainty in the measured 

dimer length, compared with measurements of bond lengths in bulk crystals, reflects the 

difficulty of the surface measurement.) Substantial subsurface atom displacements caused 

by reconstruction on the surface have been measured, so the longer dimer bonds resulting 

from fixed subsurface atom positions seem to be an artifact of this approximation. At this 

juncture, a more detailed investigation of silicon cluster models of the symmetric dimer is 

needed. 

The RHF result models the dimer as a double bond. The Si-Si single bond length 

in bulk silicon is 2.35Ä. The lowest energy configuration for the dimer includes singlet 

coupling of the dangling bonds, so one might expect a bond order of roughly 1.5. The 

GVB result of 2.26A falls about halfway between the single and double bond lengths, and 

is consistent with the bond order argument. Fixing the subsurface atoms is one way to 

approximate the steric effects of the bulk lattice, and has the effect of increasing the dimer 

length to values about or larger than the Si-Si lattice separation of 2.35 A. However, 

this approach is slightly unphysical because the subsurface atoms are too restricted. One 

expects some subsurface atom displacement in response to the surface reconstruction [88], 

so these results confirm that fixing the subsurface atoms at lattice positions is not a good 

way to include bulk steric effects. 
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3.7.3 New Cluster Model of the Dimerized Si(OOl) Surface. The discussion of 

the Si(OOl) symmetric dimer in the previous section suggests some questions that need to 

be addressed: 

1. How closely can a small silicon cluster match the unreconstructed bulk silicon geom- 
etry ? 

2. How well does an ECP basis set match silicon geometry ? 

3. How do atom displacements from small cluster models of the symmetric silicon dimer 
compare to calculated displacements in large clusters, and experiment ? 

A series of ab initio optimizations were performed on Si10H16 and Si9H12 to address 

the first two questions. In Sii0Hi6, all the Si atoms are tetrahedrahelly coordinated, as 

is bulk silicon. Figure 3.15 shows the optimized geometries for these two molecules. The 

comparison of the 6-31G* optimized geometry for Sii0Hi6 with bulk silicon lattice values 

shows differences between these two results of approximately 0.02Ä for bond lengths and 

0.4° for the bond angles. For Si9Hi2, the differences between the 6-31G* and HW ECP(d) 

optimized geometries are approximately 0.04Ä for bond lengths and 0.5° for bond angles. 

We see the HW ECP(d) basis set gives a good prediction for the bulk geometry, and differs 

by a small amount from the 6-31G* predictions. 

Another way of describing the change in the geometry of Si9Hi2 from bulk-like silicon 

is to list the differences between the optimized atom positions and the corresponding lat- 

tice positions. This description is consistent with reports of measured atom displacements 

caused by surface reconstruction. For Si9Hi2, these displacements would be interpreted as 

atom displacements caused by symmetric dimer formation. Figure 3.16 shows the GVB- 

PP(1) optimized geometry of Si9Hi2. Si atom displacements from lattice positions are 

indicated by arrows. We see that the atoms in the dimer each move approximately 0.8Ä 

closer to each along the y axis, and 0.15Ä down from the lattice positions. The second 

"layer" atoms are dragged along by the surface atoms, and are drawn closer together. 

(Identification of layers in the atom is done for comparison with larger models and exper- 

iment.) The displacement of the second layer atoms drives the third layer atoms down 

roughly 0.1Ä, while the position of the fourth layer atom is nearly unchanged. The dif- 

ferences in atom displacements between the HW ECP(d) and 6-31G* basis set results are 

approximately 0.01Ä. 
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ShnH 10n16 SioH 9n12 

LATTICE 

SiioHi6 SigHi2 
RHF RHF GVB-PP(l) 

HWECP(d) 6-31G* HWECP(d) 6-31G* HWECP(d) 6-31G* 
Dist Ä 

1 2 
1 3 
37 
79 

1 10 

3.840 
2.352 
2.352 
2.352 
2.352 

3.828 
2.342 
2.342 
2.342 
2.342 

3.888 
2.376 
2.376 
2.376 
2.376 

2.151 
2.320 
2.353 
2.364 
n/a 

2.187 
2.355 
2.385 
2.396 
n/a 

2.241 
2.329 
2.346 
2.358 
n/a 

2.280 
2.363 
2.379 
2.391 
n/a 

Angle0 

3 1 2 
3 1 4 
37 5 
79 8 

1 10 2 

90.000 
109.470 
109.470 
109.470 
109.470 

89.916 
109.376 
109.658 
109.660 
109.660 

89.847 
109.294 
109.830 
109.829 
109.829 

107.511 
115.901 
97.877 
116.993 

n/a 

107.300 
116.494 
97.552 
117.460 

n/a 

106.294 
112.485 
98.249 
115.743 

n/a 

106.062 
112.833 
97.907 
116.089 

n/a 

Figure 3.15    Comparison of ab initio optimized geometries of Si10H16 and Si9H12. 
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Atom Displacements (Ä) Caused by 
Symmetric Dimer Formation in 

S19H42 
GVB-PP(l) Optimization 

Atom HW ECP(d) 6-31G* 

«X Sy 6z 6x Sy ÖZ 

Surface 
0.000 
0.000 

0.794 
-0.794 

-0.154 
-0.154 

0.000 
0.000 

0.804 
-0.804 

-0.152 
-0.152 

1 
2 

Layer 2 
0.026 

-0.026 
0.026 

-0.026 

0.137 
0.137 

-0.137 
-0.137 

0.083 
0.083 
0.083 
0.083 

0.031 
-0.031 
0.031 

-0.031 

0.144 
0.144 

-0.144 
-0.144 

0.091 
0.091 
0.091 
0.091 

3 
4 
5 
6 

Layer 3 
0.083 

-0.083 
0.000 
0.000 

-0.098 
-0.098 

0.085 
-0.085 

0.000 
0.000 

-0.095 
-0.095 

7 
8 

Layer 4 
0.000 0.000 -0.003 0.000 0.000 0.004 9 

Figure 3.16     Atom displacements induced by symmetric dimer formation in the Si9Hi2 model 
of the Si(001) surface. The differences between the atom displacements calculated 
at the HW ECP(d) and 6-3IG* basis sets are 0.01 A.    Layers are identified for 
later comparisons; in reality, identification of layers for such a small molecule is 
questionable. 
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Figure 3.17 shows the Si66H52 cluster used in this work to model symmetric dimer 

formation on the Si(OOl) surface. The atoms highlighted in this figure are the 9 silicon 

atoms Si66H52 has in common with Si9H12. The reason for establishing the accuracy of 

the HW ECP(d) basis set in predicting geometry should be readily apparent after looking 

at this figure. At 6-31G*, Si66H52 contains 1358 basis functions, which makes a geometry 

optimization impractical at this level. At HW ECP(d), Si66HS2 contains 1028 basis func- 

tions, still too large for a geometry optimization. As a compromise, the HW ECP(d) basis 

set was used for the 9 silicon atoms which Si66H52 has in common with Si9H12. The HW 

ECP was used for the remaining atoms in the cluster. With this compromise, the cluster 

contained 686 basis functions. A GVB-PP(l) geometry optimization of Si66H52 using C2v 

symmetry took 100 hours on 32 processors on an IBM SP2. 

Two additional views of Si66H52 are shown in Figures 3.18 and 3.19. Figure 3.18 

shows the view of the surface. The displacement of the surface atoms forming the dimers 

is clear in this view. Si66H52 contains both a bare surface dimer (atoms 1 and 2) and 

two hydrogenated surface dimers (atoms 10-12 and 11-13). Because the H atoms saturate 

the dangling bonds on the surface dimer, the Si-Si bond in a hydrogenated dimer is best 

described as a Si-Si single bond. The calculated length of the hydrogenated dimer in Si66H52 

is 2.41Ä, with a Si-H bond length of 1.4751, and a Si-Si-H bond angle of 111.795°. Craig et 

al [89] report values of 2.37Ä, 1.5l2, and 108.5° respectively, for the same parameters from 

a slab MINDO calculation of the hydrogenated symmetric dimer. Northrup [90] reports 

values of 2.40Ä, 1.541, and 109° for the hydrogenated dimer from a periodic DFT model. 

Wang et al [91] report experimental values for the symmetric, hydrogenated dimer of 2.971 

Si-Si separation, 1.22±0.15l for the Si-H bond length, and 133±8° for the Si-Si-H bond 

angle. Wang et al derived these values by fitting their data to a symmetric dimer model. 

These values are difficult to believe for a symmetric dimer, and one suspects that their 

data is more consistent with the presence of buckled dimers in their experiment. 

Table 3.7 lists the displacements from lattice positions for the atoms in Si66H52. We 

see that this calculation predicts that the formation of dimers on the surface displaces atoms 

8 "layers" down. For a given layer, atom displacements near the edges tend to be slightly 

larger than for atoms closer to the center. The Si9 atoms that Si66H52 has in common with 
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Si9H12 are buried in the center of the molecule, and so these atom displacements are most 

representative of bulk silicon. 

Now for the real test. Table 3.8 shows a comparison of the GVB-PP(1)/HW ECP(d) 

calculated atom displacements using the Si9H12 and Si66H52 clusters with two experimental 

measurements of subsurface atom displacements induced by dimer reconstruction of the 

Si(OOl) surface. Felici et al [92] used X-ray diffraction in their measurements. Tromp et 

al [93] report results from ion beam crystallography. Also included in this table is Roberts' 

and Need's [94] slab (periodic) DFT calculations on the dimerized Si(OOl) surface, which 

includes results for both symmetric and buckled dimers. One observes that: 

• The predicted atom displacements from the Si9H12 and Si66H52 agree qualitatively, 
but differ quantitatively from each other. 

• Atom displacements for buckled and symmetric dimers show the greatest differences 
in the first two layers where the displacement are largest, but differences persist as 
far as 4 layers below the surface 

• The atom displacements from the calculated symmetric dimer obtained by Roberts 
and Need and from the the Si66H52 cluster model calculated in this work agree better 
with the experimental results than the displacements from their buckled dimer model. 

A very interesting result from Roberts' and Need's calculations is that the energy 

difference between the buckled and symmetric dimer is predicted to be very small, with 

the buckled dimer only 0.35 ^ lower in energy than the symmetric dimer, roughly \ 

thermal energy at room temperature. In the cluster results from this work, the use of C2v 

symmetry on Si66H52 forced symmetric dimer formation. Buckled dimers were not observed 

in optimizations Si9H12 even when no symmetry constraints were applied. However, if one 

uses lattice positions as the starting point for Si9H12, the inherent C2v symmetry in this 

structure may favor symmetric dimers. A limited search for buckled dimer formation on the 

Si9Hi2 was performed using the AMI semiempirical method by starting from asymmetric 

geometries. No buckled dimers resulted from this attempt; however, with such a small 

energy difference between the buckled and symmetric dimers one expects difficulty in 

converging to the buckled result with a cluster probably biased towards the symmetric 

result. 
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Figure 3.17    Ab initio GVB-PP(l) optimized geometry of Si66H52, HW ECP(d) basis set. This 
view is rotated slightly off the yz plane so that all the atom numbers are visible. 
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Figure 3.18 Ab initio GVB-PP(l) optimized geometry of Si66H52) HW ECP(d) basis set. Atoms 
1,2 10,12 and 11,13 are in the surface. Atoms 1,2 form the bare dimer. Atoms 10,12 
and 11,13 form hydrogenated dimers. The length of the hydrogenated dimers is 
2.4lA, slightly longer than the Si-Si bulk bond length of 2.354. 
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Figure 3.19     Ab initio GVB-PP(l) optimized geometry of Si66H52, HW ECP(d) basis set, sub- 
surface view. 
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At om Displacements (Ä) Caused by 
Symmetric Dimer Formation in Si66H52 

Atom 6x *y <5z Atom <5x *y <§z 

Surface Layer 5 

1 0.000 0.786 -0.254 20 0.000 -0.033 -0.034 

2 0.000 -0.786 -0.254 21 0.000 0.033 -0.034 

10 -0.044 0.713 -0.131 44 -0.044 -0.049 -0.060 

11 0.044 0.713 -0.131 45 0.044 -0.049 -0.060 

12 -0.044 -0.713 -0.131 46 -0.044 0.049 -0.060 

13 0.044 -0.713 -0.131 47 
48 
49 

0.044 
-0.055 
0.055 

0.049 
-0.066 
-0.066 

-0.060 
-0.050 
-0.051 

Laj rev 2 
3 -0.041 0.168 0.003 

4 0.041 0.168 0.003 50 -0.055 0.066 -0.051 

5 
6 
22 

-0.041 
0.041 
-0.030 

-0.168 
-0.168 

0.097 

0.003 
0.003 
-0.027 

51 0.055 0.066 -0.051 
Layer 6 

52 -0.016 -0.012 -0.031 

23 0.030 0.097 -0.027 53 0.016 -0.012 -0.031 

24 -0.030 -0.097 -0.027 54 -0.016 0.012 -0.031 

25 0.030 -0.097 -0.027 55 
56 
57 

0.016 
-0.058 
0.058 

0.012 
-0.021 
-0.021 

-0.031 
-0.053 
-0.053 

Laj rev 3 
7 -0.043 0.000 -0.172 
8 0.043 0.000 -0.172 58 -0.058 0.021 -0.053 

14 
15 
16 

-0.020 
0.020 

-0.020 

0.105 
0.105 

-0.105 

0.116 
0.116 
0.116 

59 0.058 0.021 -0.053 

Layer 7 
60 -0.012 0.000 -0.033 

17 0.020 -0.105 0.116 61 0.012 0.000 -0.033 

26 -0.127 0.000 -0.140 62 -0.018 0.000 -0.033 

27 
28 
29 

0.127 
-0.024 
0.024 

0.000 
0.048 
0.048 

-0.140 
0.055 
0.055 

63 0.018 0.000 -0.033 
Layer 8 

64 0.000 0.000 -0.015 

30 -0.024 -0.048 0.055 65 -0.021 0.000 -0.024 

31 0.024 -0.048 0.055 66 0.021 0.000 -0.024 

Layei r4 

9 0.000 0.000 -0.109 36 -0.008 0.041 0.087 

18 -0.070 0.000 -0.116 37 0.008 0.041 0.087 

19 0.070 0.000 -0.116 38 -0.008 -0.041 0.087 

32 -0.108 0.000 -0.156 39 0.008 -0.041 0.087 

33 0.108 0.000 -0.156 40 -0.021 0.010 0.050 

34 0.000 0.070 0.134 41 0.021 0.010 0.050 

35 0.000 -0.070 0.134 42 -0.021 -0.010 0.050 

43 0.021 -0.010 0.050 

Table 3.7 Atom displacements induced by symmetric dimer formation in the Si66H52 model of 
the Si(001) surface, GVB-PP(1)HW ECP(d) optimized geometry. Atoms 1-9 form the 
silicon cage in i9Hi2. The dimers 10-14 and 11-13 were saturated so that the cluster 
contained only one unsaturated surface dimer to be consistent with the SigH^ model 
of a single unsaturated surface dimer. 
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Compared to the other effects that are not considered in an ab initio cluster cal- 

culation, thermal vibrations, surface diffusion, cooperative interactions between adjacent 

dimers on the surface, the errors resulting from the use of symmetric rather than buckled 

dimer model are expected to be small. 

Comparison of Displacements From Lattice Positions 
Caused by Si Surface Dimer Formation 

Experiment Calculated 
Felici Ref [92] Tromp Ref [93] This Work Roberts Ref [94] 

Buckled Buckled Symmetric Sym. Buckled 

Label Value (A) Label Value Label SigBi2 Si66H52 Slab 

1 dl 0.5  ±0.05 (0,0,0)ARx 0.478 Syi 0.795 0.786 0.803 0.990 

1 d2 0.31 ±0.1 (0,0,0)AR, 0.100 hz\ -0.154 -0.254 -0.330 -0.530 

1 d3 -0.83 ±0.02 (2,0,0)ARX -1.071 hi -0.795 -0.786 -0.803 -0.650 

1 d4 -0.61 ±0.1 (2,0,0)AR, -0.459 6z2 -0.154 -0.254 -0.330 0.270 

2 d5 0.07 ±0.008 (0,0,-l)ARr 0.094 <52/3 0.137 0.168 0.103 0.120 

3 d6 -0.027±0.02 (1,1,-2)AR, -0.025 6Z7 -0.098 -0.172 -0.146 -0.180 

3 d6 0.027±0.02 (3,1,-2)AR, 0.031 6z14 n/a -0.116 0.119 0.098 

4 d7 -0.054±0.008 (4,0r4)ARa; -0.056 <5j/44 n/a -0.049 -0.011 -0.016 
4 d7 0.054±0.008 (2,0,-4)ARx 0.042 SV46 n/a 0.049 0.011 0.011 

5 d8 -0.031±0.008 (4,1,-5)AR9, -0.021 6y52 n/a -0.012 n/a n/a 

5 d8 0.031±0.008 (2,l,-5)ARa, 0.019 6y54 n/a 0.012 n/a n/a 

Table 3.8 Comparison of atom displacements caused by dimer formation on the Si(001) surface. 
The number is the first column is the layer; Layer 1 is the surface.The two experimen- 
tal references are from measurements on buckled surface dimers. The notation for the 
calculated displacements in this work refers to Table 3.7. E.g., 6y44 is the y displace- 
ment for Si atom 44 in Si66H52. The calculated atom displacements from the Si9Hi2 
model of the dimer are qualitatively consistent with the calculated displacements from 
the Si66H52 model, though the two results differ quantitatively. The DFT results of 
Roberts using a periodic slab surface model are shown for comparison. Roberts was 
able to model both symmetric and buckled dimers. 
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3.7.4 Cluster Model of Two Surface Dimers. Yang et al [95] have very recently 

published an "embedded" cluster model of two dimers on the Si(OOl) surface and purport 

to show that the lowest energy configuration consists of two buckled surface dimers. There 

are a number of glaring discrepancies in this reference. The authors' use of the term 

embedded is extremely misleading; in fact, their cluster is merely a hydrogen terminated 

silicon cluster without mechanical or electronic embedding. The motion of the subsurface 

atoms is partially restricted in their model, which we've seen is an inappropriate method 

for reproducing the steric environment of a bulk material. Their comparisons of the energy 

difference between unbuckled and unbuckled dimer pairs is based on RHF 6-31G and DFT 

calculations that model the dimers as Si-Si double bonds, which is known to be the wrong 

model for these singlet diradicals (Ref [81]). Their calculated energy difference between the 

unbuckled and buckled configurations is huge, 0.51eV, compared to previous calculations 

that predict energy differences between the two configurations to be approximately thermal 

energy at room temperature. 

In order to check the results of Reference [95], the two dimer cluster model used in 

this reference, Si15H16, was optimized in a GVB-PP(2), 6-31G* calculation. The dangling 

bonds on the atoms in each dimer were used to form the GVB pairs, the same approach 

used in the Si9H12 model of a single surface dimer. Reference [95] modeled unbuckled 

dimers by applying C2v symmetry to Sii5Hi6, and modeled buckled dimers by applying C2 

symmetry. To remove the question of symmetry bias on dimer buckling, the GVB-PP(2) 

optimization on Sii5H16 was performed without any symmetry constraints. 

The GVB-PP(2), Ci optimized geometry of Si15H16 is shown in Figure 3.20. (The 

cluster Si18H24, used to provide a set of bulk silicon lattice positions for Sii5Hi6, is also 

shown in this figure.) Without the application of symmetry, a correlated description of the 

dimer bonds results in a pair of unbuckled dimers. A GVB-PP(2) 6-31G* Hessian calcu- 

lation resulted in no imaginary frequencies, confirming this geometry as a stable point on 

the PES. A comparison of the unbuckled C2„, buckled C2 6-31G RHF optimized geome- 

tries from Reference [95] and the unbuckled Cx GVB-PP(2) optimized geometry is listed 

in Table 3.9. (Table 3.9 is based on Table II from Reference [95].) The dimer separations 

from Reference [95], d(l-l), are very large for silicon double bonds that result from a RHF 
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model of the dimer bond (a value of 2.17Ä at 6-31G* was obtained in this work). This 

result is most likely caused by artificially constraining the motion of the subsurface atoms, 

as is shown in Table 3.6. The dimer bond separations in the GVB-PP(2) model are 2.28Ä, 

consistent with the dimer length in the 6-31G* GVB-PP(l) model of a single surface dimer 

obtained in this work. For comparison with our previous results, Table 3.10 lists the atom 

displacements from lattice positions caused by formation of the surface dimers. The results 

of C2„ and C2 RHF 6-31G* calculations also performed in this work are listed as well. 

The energies for Sii5H16 obtained in this work are: 

Symmetry Model Energy (H)     AE (£*£) 

C2„ RHF -4343.016112 0.0 

C2 RHF -4343.016112 0.0 

d 5ROHF -4343.024193 -5.0 

Ci 1GVB-PP(2)    -4343.081277        -40.9 

We see that the Cx GVB-PP(2) model is 40.9^ lower in energy than the RHF result. 
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Si18H24 
Bulk Model 

S115H16 
Surface Model 

Figure 3.20 GVB-PP(2) 6-31G* optimized geometry of the Sii5Hi6 cluster model of two adjacent 
dimers on the Si(001) surface. The cluster Sii5Hi8 used to provide a set of silicon 
lattice poritions is also shown. 
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Reference [95] 

6-31G RHF 

This Work 
6-31G* GVB-PP(2) 

Unbuckled 
c2 

Buckled 
Ci 

Unbuckled 

h(l-2)(Ä) 
h(2-3) 
h(3-4) 
d(l-l) 

d(l-l) 
d(l-2) 
d(l-2) 
d(2-2) 
d(2-3) 
d(3-4) 

1.191 
1.718 
1.381 
2.239 
SYM 
2.239 
SYM 
3.464 
2.439 
2.365 

1.275 
1.661 
1.383 
2.384 
SYM 
2.384 
2.323 
3.545 
2.429 
2.366 

1.110 
1.677 
1.328 
2.282 
2.282 
2.360 
2.366 
3.604 
2.380 
2.394 

Table 3.9 Comparison of Si15H16 optimized geometry, RHF and GVB-PP(2) models. The 
distances listed in column 1 are used in Ref [95]. h(i-j) is the separation along 
the z-axis between layers i and j. d(h-k) is the distance between nearest neigh- 
bor atoms in layers h and k. 

At am Displacements (Ä) Caused by 
Dimer Formation in S115H16 

Atom 
Restricted Hartree Fock 6-31G* GVB-PP(2) 6-31G* 

^2v c2 Ci 
6x Sy <5z <5x *y <5z 6x *y 62, 

1 -0.089 0.852 -0.138 -0.089 0.852 -0.138 -0.064 0.803 -0.037 
2 0.089 0.852 -0.138 0.089 0.852 -0.138 0.064 0.803 -0.037 
3 -0.089 -0.852 -0.138 -0.089 -0.852 -0.138 -0.064 -0.803 -0.037 
4 0.089 -0.852 -0.138 0.089 -0.852 -0.138 0.064 -0.803 -0.037 
5 0.000 0.218 0.255 0.000 0.218 0.255 0.000 0.222 0.255 
6 0.000 -0.218 0.255 -0.000 -0.218 0.255 0.000 -0.222 0.254 
7 -0.098 0.136 0.152 -0.098 0.136 0.152 -0.033 0.137 0.137 
8 0.098 0.136 0.152 0.098 0.136 0.152 0.033 0.137 0.137 

9 -0.098 -0.136 0.152 -0.098 -0.136 0.153 -0.033 -0.137 0.137 

10 0.098 -0.136 0.152 0.098 -0.136 0.153 0.033 -0.137 0.137 

11 0.000 0.000 -0.007 0.000 0.000 -0.008 0.000 0.000 0.002 
12 -0.147 0.000 -0.037 -0.147 -0.000 -0.037 -0.100 0.000 -0.041 

13 0.147 0.000 -0.037 0.147 0.000 -0.037 0.100 0.000 -0.041 
14 -0.085 0.000 0.012 -0.085 -0.001 0.012 -0.055 0.000 -0.003 
15 0.085 0.000 0.012 0.085 0.001 0.012 0.055 0.000 -0.003 

Table 3.10    Atom displacements induced by dimer formation in Si15H16 
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3.8 MIMOMM Optimization of Si9H12 

3.8.1 Hybrid Cluster Model of Si(OOl) Surface. Now that we've quantified the 

differences between the Si9H12 and Si66H52 models of a symmetric surface dimer, we need 

to examine the effect of a MIMOMM optimization of the Si9Hi2/Si66H52 hybrid cluster. 

In Section 3.5.2, we saw that the MIMOMM optimized geometry of Si6Hi2/Si9Hi2 was 

qualitatively different than the ab initio optimized geometry of Si6Hi2. For this case, the 

optimized geometries of the embedded and bulk clusters are very different, so it makes sense 

that the ab initio and MIMOMM results are very different. However, for the Si9Hi2/Si66H52 

hybrid system, the ab initio optimized geometry of the embedded cluster is very similar 

to the bulk cluster. One expects that an MIMOMM optimization may only produce small 

structural changes for a case like this. 

Table 3.11 shows a comparison of Si9Hi2 optimized alone, the Si9H12/Si66H52 hybrid 

system, a full ab initio GVB-PP(l) optimization of Si66H52, and the MM3 result. Table 3.11 

also shows that the large bulk cluster adds a small additional computational cost to the ab 

initio calculation. As before, we see that MM3 predicts a significantly longer dimer than 

the ab initio results. MM3 is only parameterized for sp3 "hybridized" silicons, and cannot 

accurately model singlet diradiacal bonding. Overall, we see small differences between 

the Si9Hi2, the Si9Hi2/Si66H52 hybrid result, and the full ab initio results. This result 

suggests that localized steric forces, i.e., steric effects arising from nearest and second 

nearest neighbor atoms, are most important for determining the qualitative structure of 

the dimer. However, as we will see in Chapter V, steric effects from third, fourth, and 

higher nearest neighbor atoms are very important when one attempts to model adsorption 

or other processes which induce large atom displacements in the cluster. Small cluster 

models are unacceptable for these cases. 

3.9 Discussion 

3.9.1 Guidance on Embedded Cluster Design. The MIMOMM optimized geom- 

etry for Si6Hi2 is very much different from its ab initio optimized geometry, while the 

MIMOMM and ab initio geometries for Si9H12 are almost identical. Some consideration 

of these cases reveals the fundamental difference between these two cases, and provides 

3-44 



Ab initio MIMOMM Ab Initio MM 

Embedded (AI) Si9Hi2 SigH.12 S166H52 None 

Bulk (MM3) None S166H52 None Si66H52 

d 2-1 (A) 2.261 2.265 2.267 2.370 

d3-l 2.344 2.344 2.333 2.347 

d4-l 2.344 2.344 2.333 2.347 

d 5-2 2.344 2.344 2.333 2.339 

d6-2 2.344 2.344 2.333 2.339 

d 7-3 2.360 2.351 2.329 2.339 

d 7-5 2.360 2.351 2.329 2.339 

d 8-4 2.360 2.351 2.329 2.339 

d8-6 2.360 2.351 2.329 2.339 

d9-7 2.368 2.368 2.353 2.348 

d9-8 2.368 2.368 2.333 2.348 

Z 3 1 2(°) 106.320 105.987 105.378 104.129 

Z 3 1 4 111.298 112.761 114.352 112.146 

Z 375 98.600 98.245 97.579 97.479 

Z48 6 98.600 98.245 97.579 97.479 

Z 79 8 115.944 114.400 113.085 112.017 

SP2 Nodes 8 8 32 1 

Basis Functions 150 150 416 n/a 

Calc Time 118 min 129 min 100 hours 30 sec 

Table 3.11 Effect of bulk cluster on Si9H12 structure. All ab initio calculations were 
GVB-PP(l), with the dangling bonds on the dimer forming the GVB pair. 
321G* basis set was used for the Si9Hi2 cases. HW ECP(d) basis set used for 
9 Si atoms in Si66H52, HW ECP used for rest of the atoms. 

some guidance for embedded cluster design. Finite cluster models of crystal lattices will 

be cage-like molecules. A cluster that is an open cage, like Si6Hi2, distorts away from a 

lattice-like geometry when allowed to optimize freely. The addition of MM steric forces 

thatc/ose the cage have a pronounced effect, driving the MIMOMM optimized geometry 

close to the bulk geometry. However, for a cluster that is already a closed cage, like Si9Hi2 

the addition of MM steric forces will have a minor effect on the optimized geometry. Si9H12 

may provide a reasonable representation of the bulk steric environment for a single Si sur- 

face dimer, except in modeling reactions which produce large distortions in its geometry. 

The computational cost of a hybrid optimization is driven by the ab initio calculations on 

the embedded cluster. Thus, for surface models, it makes more sense to put as many of 

the embedded cluster atoms as possible in the surface layers, and use the less expensive 

3-45 



MM atoms to close off the structure underneath. This is only one of a number of factors 

that must be considered in EC design, and will not make sense for every system. 

3.9.2 Molecular Mechanics Potentials. The addition of MM forces from a bulk 

cluster to an ab initio optimization of an embedded cluster has been shown to cause large 

changes in the embedded cluster's optimized geometry consistent with the geometry of the 

bulk cluster. How closely the embedded cluster matches the structure of the real system of 

interest depends on the specific MM force field (collection of interaction potentials) used, 

the level of ab initio theory used, and the consistency of the two sets of forces from these 

two different calculation. MM force fields are usually derived from experiment. Ab initio 

calculations can reproduce experimental data when a sufficiently large basis set is used in 

conjunction with methods that consider electron correlation. It is unclear how closely the 

particular MM force field being used in MIMOMM will match the interaction potentials 

from the level of ab initio theory actually being used. If the derivatives of the angle bend 

potentials in MM3 were twice as large as the ab initio energy gradients in the EC, the MM 

gradient would dominate the QM gradient, and the MIMOMM optimization driven by the 

hybrid gradient could converge at a very bad answer. 

The only way to insure consistency between the ab initio and MM interaction po- 

tentials is to derive an MM force field from ab initio calculations. This procedure must 

be performed for every different system investigated. Krimm et al [96] have devised a 

general method to transform a set of forces (energy gradients) from ab initio calculations 

into a MM force field that lends itself to automation. This method does require consid- 

erable expertise in specifying the components of the MM force field; however, it provides 

the advantage of applying MIMOMM to systems for which force field parameters do not 

currently exist. 

3.10    Recommendations 

The 1992 version MM3 of was selected as the MM code for this work because its 

performance had been demonstrated in the original implementation of IMOMM by Maseras 

et al [4], because it is the last version for which source code is available, and because a 
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public domain MM code was thought unavailable. MM3 has two main limitations: the 

MM3 force field has been superseded by other force fields, and since MM3 is a commercial 

code, it cannot be distributed freely along with the source code for GAMESS. Near the 

end of this research, we became aware of the MM code Tinker, which is a very powerful 

public domain MM package [97]. Tinker is written in standard Fortran, includes a number 

of different MM force fields (including MM3), and can readily accept user defined force 

fields. Follow-on work implementing the modified version of IMOMM described in this 

chapter using GAMESS and Tinker is in progress. This effort should be completed and an 

agreement that would allow the distribution of the required portions of the Tinker package 

along with GAMESS should be made. 
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IV.   Modifying the electronic environment of finite cluster models of surface 

reaction sites 

4.1    Introduction: The Problem of Cluster Termination 

A finite cluster model of a surface reaction site will contain a number of unbonded 

electrons, "dangling bonds" at the edges of the cluster that would normally be involved in 

bonding to other lattice atoms if the cluster were part of an infinite lattice. These dangling 

bonds are highly reactive, and can interact with each other to cause large distortions in the 

in the cluster's structure (surface reconstruction causing subsurface atom displacement) 

so that the cluster is no longer a faithful model of a surface reaction site. Even if they 

don't interact, a cluster with dangling bonds on all boundaries is still a poor chemical 

model of the surface of a crystal, which only has dangling bonds on one of its boundaries 

( the "surface"). In cluster calculations, dangling bonds are commonly terminated with 

hydrogen atoms to prevent these problems. However, H atom termination introduces a 

different problem. The H atoms used to terminate the cluster will not have the same 

electronegativity and polarizability as the lattice atoms they replace. E.g., the chemical 

behavior of a small silicon cluster terminated with H atoms may be qualitatively different 

than the chemical behavior of a real silicon surface. 

A simple, brute-force approach to minimize the influence of termination is to use a 

cluster large enough that the reaction site is "far" removed (say 3 or more bond lengths) 

from the H atom termination. (The actual distance will vary with the specific material.) 

Of course, the problem with this approach is computational cost. Lattice-like clusters are 

3-D structures. Moving the cluster termination one additional bond length away from the 

reactive site requires adding an additional shell of atoms around the edges of the entire 

cluster. (The number of atoms in each layer is roughly proportional to l2, where 1 is the 

number of layers between the reactive site at the edges of the cluster.) I.e., the number 

of atoms in the cluster can quickly become prohibitively large for a quantum chemistry 

calculation without appreciably reducing the effect of H termination. Several researchers 

have attempted to achieve tractable computational costs in large cluster calculations by 

using basis sets of varying size throughout the cluster: the largest basis in the vicinity of a 
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reactive site, smaller basis sets farther away from a reactive site [98, 99]. This technique 

is known as the mixed basis set approach. Unfortunately, the use of mixed basis sets 

introduces basis set superposition error (BSSE) at the boundary between the higher and 

lower basis set, which degrades the accuracy of the calculation. In a cluster calculation, 

the savings in computational cost scales linearly per atom. Since the number of atoms per 

shell scales quadratically, use of mixed basis set does not appreciably increase the size of 

the cluster in terms of distance in bond lengths from the reactive site to the termination. 

Since the use of very large clusters is computationally prohibitive, a number of re- 

searchers have explored methods to modify the electronic environment of a small cluster so 

that it behaves as if it were part of an extended material. Collectively, these methods are 

referred to as embedded cluster calculations [100, 101, 102, 103]. In Whitten's procedure 

(one of the earliest reported) one first performs an ab initio calculation on a large cluster, 

but using a small basis set. The orbitals from this Hartree-Fock wavefunction are local- 

ized and partitioned into an embedded cluster and a bulk cluster (the terminology used 

in Chapter III is based on Reference [100]). An effective electrostatic potential is derived 

from the the orbitals in the bulk cluster, and this potential is imposed on the embedded 

potential in subsequent calculations as a representation of a bulk electronic environment. 

An alternate embedding approach, applicable where symmetry permits, is to define 

a unit cell and apply periodicity to crystal symmetry groups to embed the unit cell in 

an "infinite" material. This approach is used in both Hartree-Fock based codes such as 

CRYSTAL95 [104] as well as DFT codes [105, 106]. CRYSTAL95 includes point symmetry 

groups for molecules, 1-D symmetry for polymers, 2-D symmetry for surfaces, and 3-D 

symmetry for bulk materials. A companion code to CRYSTAL, EMBED [107], is used 

to model adsorption on crystalline surfaces. A limitation using periodic surface models 

is that the adsorbates must also be represented periodically. In order to insure that each 

adsorbate atom or molecule does not interact with its periodically created "clones", the 

size of the unit cell may become so large that these calculations also become prohibitively 

expensive. 

Instead of trying to eliminate the problem of cluster termination, one could try to 

use the terminating atoms to trick the cluster atoms into believing they were actually 
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part of a bulk material. This approach was first attempted by Redondo and Goddard [7] 

who created artificial one-electron "atoms", dubbed siligen, for terminating small silicon 

clusters. (Wu and Carter [8] refer to these "atoms" as Hs, the term which is used in this 

work.) One creates the H~s in a small molecular model system which is taken to represent 

bulk silicon, and then uses the Tls in place of H atoms in subsequent cluster calculations. 

Tls are an attractive option for making a small cluster behave chemically more like a 

bulk material because they have the same low computational cost as H atoms in ab initio 

calculations, and unlike the embedded cluster methods described above, Hs are not limited 

to one specific code. 

H termination has been used under very limited conditions: they were created using 

the same model system and the same medium-sized basis set. It is unclear how well H 

termination will work in applications other than silicon, and especially in two component 

systems such as SiC. In Chapter III the effect of adding molecular mechanics forces to 

the optimization of the geometry of small clusters was investigated. In this chapter, the 

additional effect of termination with H is evaluated. This chapter explores the use of 

alternative model systems and basis sets for creating Hs, as well as the possibility of 

creating Hs to terminate silicon carbide clusters 

Since we seek to match the electronic environment of a bulk material, we must first 

discuss how the the electronic environment within a molecule is defined. The modification 

of the electronic properties of H atoms using a finite basis set expansion is next discussed. 

The method used to create H atoms for silicon by Goddard and Carter is then discussed, 

as well as questions left open from this work. Variation's of Goddard's method, as well 

as new methods for creating H atoms, are then presented. The ability of the different 

7T atoms created in this work to mimic the electronic environment is compared. Tests of 

other molecular properties are performed using the "best" H to see what other effects the 

use of H atoms may have. 

To provide a comparison with bulk silicon behavior, full quantum calculations were 

performed on large, hydrogen terminated silicon molecules, Si66H52, Si66H53, and Si66H54. 

(Si66H52 is shown in Figure 3.17). The terminating H atoms in these molecules are several 

bond lengths away from the silicon atoms which are compared, and so are judged to be 
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"reasonable" approximations for bulk silicon. As was mentioned in Chapter III, a GVB- 

PP(1) optimization of (Si66H52 took 100 hours on 32 nodes of an IBM SP2. Full ab initio 

calculations on larger silicon clusters were impractical for this study. 

4.2    The Electronic Environment of a Molecule 

The proper description of the electronic environment of a molecule is the electron 

density distribution (EDD), obtained from the square of the electronic wavefunction. The 

EDD has two desirable characteristics. First, the EDD can be measured. Second, as 

one improves an ab initio calculation, by increasing the size of the basis set or including 

correlation, the square of the approximate wavefunction approaches the experimental EDD. 

However, in practice there are several drawbacks to using the EDD as a metric for creating 

TTs. Since the goal is to match the electronic environment of a bulk material in a small 

cluster, one would first have to have a bulk-like EDD. This could be obtained from the 

optimization of a very large cluster model. Then, one would have to define a smaller, model 

system terminated with ITs. One would then have to monitor the EDD of the model cluster 

as the properties of the TTs are changed until the EDD of the model system matched the 

bulk-like EDD. The computation and analysis time involved in a process such as this was 

judged to be too long for the purposes of this work. 

A commonly used simplification is to reduce the molecular EDD into a collection of 

atom centered charges [108]. The electron density distribution function p(f) is defined such 

that p{r)df is the probability of finding an electron in a volume element dr. Integrating 

over all space, 

p(r)df = n, (4-1) 
/' 

where n is the total number of electrons in the molecule. In Hartree-Fock theory, Equa- 

tion 4.1 becomes, 

^ = EEu(M. (4-2) 
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where PßV are elements of the density matrix, and the summations are carried out over all 

the atom centered atomic basis functions, <j){r). Integrating Equation 4.2, 

"NN _ (4-3) 

fi     v 

where 5'/ai/ are elements of the overlap matrix. 

Now that we have an expression for the electron density in terms of atomic orbitals, 

the problem which remains is how to partition the electron density among the individual 

atoms. The simplest recipe was proposed by Mulliken [109]. In Mulliken's procedure (called 

the Mulliken population analysis), the summation over pairs of atomic basis functions, 

Equation 4.3, is divided into diagonal (// = v; Sßv = 1) and off-diagonal (fi ^ v) parts 

EEv^ = £ ^ + 2££iVv = »• I4-4) 

It is reasonable to assign any electrons associated with a particular diagonal element P^ 

to the atom on which the basis function 4>n 1S centered. It is also reasonable to assign 

electrons associated with an off-diagonal element, P^, where both fa and fa reside on 

the same atom to that atom. However, how does one partition electrons from the density 

matrix elements P^ where <f>ß and fa are centered on different atoms? Mulliken's answer 

was to give each of the atoms half, an arbitrary, but simple choice. 

Within Mulliken's scheme, we can define a gross population, q^, for each basis func- 

tion (f)^, 

qß = Pw + Y,Pi»>Si»>- ^4.5) 
p£v 

Atomic populations, q^, and atomic charges, Q^, are then defined as 

QA = £ JMI QA = ZA-qA, (4.6) 
A" 

where qßA is a basis function centered on atom A, and ZA is the atomic number of atom 

A. 
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The Mulliken population analysis has a number of significant limitations. Equal 

partitioning of charge density is improper for heteronuclear molecules. This partitioning 

becomes less well defined as one increases the size of the basis set, and adds in diffuse 

functions with large spatial extent. For example, one could calculate the electronic wave- 

function for H20 using a set of increasingly diffuse basis functions centered on only the O 

atom. Because all these basis functions are centered on the 0 atom, a Mulliken analysis 

would assign the 0 atom a charge of -2, and each H atom a charge of +1, i.e., water would 

appear to be purely ionic! The primary advantage of the Mulliken population analysis is 

the ease with which it can be calculated. If one is careful in setting up a model system 

and in choosing the basis set, using Mulliken charges as the metric for defining H atoms 

is probably not too bad. Previous efforts relied on Mulliken charges to create H atoms 

[7, 8]. Mulliken charges are also used in this work for creating H atoms; however, other 

implications of their use are also investigated. 

Other schemes for reducing the EDD into a set of atom centered point charges have 

been developed [110, 111, 112]. However, it is important to remember that the EDD is 

really a molecular property, so any scheme that seeks to represent the EDD as a collection 

of nuclei-centered charges will have limitations. 

4.3   Altering the Electronegativity of a Hydrogen Atom 

In an ab initio model of a molecule, each atom is represented with a nuclear charge, 

nuclear mass, and a set of basis functions that describe the atomic electronic wavefunction. 

The most commonly used basis functions are Gaussian Type Orbitals (GTOs), or Gaussian 

expansions of Slater Type Orbitals (STO-NG), where N is the number of Gaussians [19]. 

The parameters in the atomic orbitals are optimized to produce minimum energy solutions 

for the atomic electronic wavefunction. To alter the electronegativity of an atom modeled 

this way, one could modify the atom's nuclear-electron attraction by either (artificially) 

changing the nuclear charge, or by changing the average radial distance of the atom's 

electrons by changing the radial parameters of the atom's basis functions. Both methods 

have been used in previous work [66]. This work focused on changing the parameters of 

the atomic orbitals because changing nuclear charges of only some of the atoms removes 
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overall charge neutrality in the molecule. This non-neutrality may produce inappropriate 

surface charging, and unphysically bias the surface chemistry. 

Since the jffs are only used to give a better representation of the electronic envi- 

ronment of a bulk material, it is desirable to use the smallest functional expansion of the 

atomic orbital, basis set, to keep the computational cost as low as possible. A number of 

functional forms are used for basis sets. One of the earliest, proposed by Slater, is called a 

Slater Type Orbital (STO) [17]. The normalized Is Slater Type Orbital (STO), centered 

at RA has the form [19] 

tff(C, r- RA)=[Q-) exp-^-^l (4.7) 

The parameter C controls the radial extent of the orbital. With C, = 1.0, Equation 4.7 is an 

exact solution for the ground state of atomic hydrogen. STO's give a good representation 

of the physical behavior of atomic wavefunctions; however, they are difficult and time con- 

suming to integrate numerically. Another functional form used for basis sets are Gaussian 

Type orbitals (GTOs). GTOs do not give as good a representation of the wavefunction as 

STOs, but can be integrated very efficiently. A normalized Is GTO has the form: 

4>GJ{a,r- RA) = (^) exp-^-^l2 . (4.8) 

A compromise between the better physics of the STO and the better numerics of the GTO 

is to expand a STO with N GTOs [24]. 

<t>SJ°-NG«,?- RA) = Eci<t>ZF(C^i,r- RA) (4-9) 
8 = 1 

The unnormalized STO-3G basis set for atomic hydrogen used in molecular calculations is 

[24, 113] 

LSTO-ZG (( = 1.24,r-RA)    =    0.154<#f(1.242 X 2.227, f-RA)+ 

0.535<^f/(1.242 X 0.405, r- RA) + 0.444<£?/(1.242 X 0.109, f- RA). 
(4-10) 

4-7 



Here, ( = 1.24 reflects the fact that the hydrogen's electron density shrinks in towards the 

nucleus in molecules, so the minimum energy solution for hydrogen in molecules requires 

the use of a smaller orbital. 

Figure 4.1 shows the radial profile of the hydrogen Is STO-3G basis function for 

several values of (. As ( is decreased, the average value of r increases. It is interesting to 

0.0- 

Distance 

Figure 4.1    £ dependence of the STO-3G basis set 

note that electronegativity is actually a quadratic function of ( for a hydrogenic Is basis 

function [7, 66]. The definition of the ionization potential (IP) of an atom or molecule x is 

IP = Ex+ — Ex. (4.11) 

The electron affinity is defined as 

EA = EX- Ex (4.12) 
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Combining Equations 4.11 and 4.12, one finds for a hydrogenic Is orbital (x=H) [7] 

X = \{IP + EA) = \EH- = ~\e + (Z - A) C (4.13) 

Equation 4.13, the electronegativity as a function of (, is plotted in Figure 4.2. Also shown 

in Figure 4.2 are the Mulliken charges for a silicon atom connected to an H in a model 

molecule as a function of ( used in the ~H (cf Table 4.3), which show a similar quadratic 

behavior. 

|    -0.4 H 

-0.6- 

-0.8- 
— Electronegativity % 
o~ Silicon Mulliken Charge 

0 
v 

0.0 
T" 
0.5 

"T" 
1.0 

c 
1.5 

--0.8 

2.0 

Figure 4.2    C, dependence of hydrogen electronegativity.   Also plotted is the_ Mulliken 
charge on silicon atom 1 from Table 4.3 as a function of ( on the H 

This behavior of the electronegativity is an artifact of the STO description of the 

hydrogen atom, and demonstrates that one cannot ascribe physical significance to a value 

of C that produces a desired Mulliken charge. When ( for a hydrogenic Is basis function 

is arbitrarily adjusted to mimic the electronegativity of another material, ( should only 

be considered to be a system, basis set, and geometry-dependent parameter that ensures 

proper electronic boundary conditions for the cluster [66]. The silicon valence shell contains 
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both s and p atomic orbitals, so one should not expect an H atom created using only an 

s orbital with a scaled value of C to perfectly reproduce all of silicon's properties. 

4.4    Creation of Hs: Three Approaches 

4.4.I Previous Work. Figure 4.3 shows the model system used by several [7, 8, 

114] groups to generate ~Hs that match the electronegativity of bulk silicon. This molecule, 

Si5H12, has tetrahedral (Td) symmetry, so only 3 of the 15 atoms are unique, which greatly 

reduces calculation times. All nuclear separations are set to the silicon lattice value of 

2.35 Ä. (As will be discussed in Section 4.4.4, the choice of Si-H separation is somewhat 

arbitrary, as one can find a value of C that produces the desired Mulliken charge on the 

silicon atoms in the model molecule over a wide range of separations.)   In this model 

Figure 4.3    Si5H12 model system used to create H atoms 

system, the central silicon atom is bonded only to other silicon atoms. Since all the 

nearest neighbor atoms to this central silicon are also silicon, Goddard et al judged the 

Mulliken charge to be an adequate measure of neutrality for the central atom. This same 

model can also be used to create Hs for bulk diamond by using carbon instead of silicon 

(with diamond lattice separations). An alternate metric for determining whether the H 

model bulk-like silicon is to use the Mulliken charges on all the silicons instead of just the 

Mulliken charge on the central silicon. 

4-10 



In creating their H~s, Goddard et al [76] used an Effective Core Potential (ECP) basis 

set for the silicons, with a 3-21G split for the valence electrons. The STO-3G basis set for 

hydrogen was used as the starting point. The value of C was varied until the Mulliken charge 

on the central silicon became 0.0, the value one would find in bulk silicon. In subsequent 

calculations on the Si97f 12 model of a silicon surface dimer, the Si-H separation was fixed 

at the lattice value of 2.35Ä. 

Carter et al [8] used this procedure on the same model system and ECP basis set 

for the silicons. However, instead of just varying the the overall radial scaling factor ( 

of a hydrogen STO-3G basis set, Carter et al varied all six parameters, 3 coefficients 

and 3 exponential terms, individually until the Mulliken charge on the central Si atom in 

the model system went to 0.0. Carter's functional fit, three independent Gaussians, is a 

triple zeta (TZ) basis set, as the ratio of the three Gaussian basis functions is not fixed. 

Once optimum values of these 6 parameters were determined, they were fixed and used 

as a single linear combination, a triple zeta basis function contracted to a "STO-3G"-like 

single basis function for computational efficiency. However, unlike Goddard, in subsequent 

calculations on SigH12, Carter et all allowed the Si-H separations to vary as the overall 

Si®H~i2 geometry was optimized. The optimized Si-H separation was 1.72Ä. 

Allowing the Si-if separation to vary in these calculations seems odd because the 

basis set for ~H depends on the (fixed) Si-TT separation used in the model system. Fixing 

the Si-if separation would seem to be crucial. However, the Mulliken charges reported 

by Carter for SigTT^ are more representative of bulk silicon than Si9H12. The Si9Hu 

optimizations performed in this work allowed the Si-H separation to vary because these 

calculations were performed using Cartesian coordinates due to difficulties encountered in 

specifying internal coordinates for this molecule. Internal coordinates such as bond lengths 

cannot be fixed using Cartesian coordinates. 

44.2 Creation of IT Atoms Using Si5H12 Model System. For comparison with 

the work of Goddard and Carter, H~s were created using the Si5H12 model system. In 

this study, the Hay Wadt ECP basis set [115] in GAMESS [9] was used, which is similar 

to the ECP basis set used by Goddard and Carter.   Although including d functions in 
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the basis set is known to be required for accurate results in silicon, d functions were not 

used in the Si5Hi2 model system by either Goddard or Carter to create their Hs. In this 

prior work, d functions were used in subsequent calculations on S\9H12 model of a surface 

dimer, but only on the 2 Si atoms in the dimer, which are not bonded to any Hs. This 

is an important distinction because the value of ( used in the H to produce the desired 

Mulliken charge in the model system depends on the basis set used in the model system. 

Thus, it is inappropriate to use an ~H created with the HW ECP basis set to terminate 

a silicon atom described with the HW ECP(d) basis set. In this study, Hs were created 

using the Si5Hi2 model system using HW ECP and HW ECP(d) to quantify the effect of 

adding d functions on the optimum value of (, and to enable calculations on Si9_ffi2 to be 

performed in which d functions are added to all nine Si atoms. 

Table 4.1 shows the Mulliken charges for the Si5iTi2 model system as a function of 

C obtained in this work. Neither Reference [7] nor [8] provide comparable data, so the 

differences between using a single parameter or six parameters to define the H atoms is 

unclear. The first row in Table 4.1 shows the Mulliken charges for the hydrogen terminated 

molecule. The last column in this table, labeled A, is the sum of the absolute value of 

the Mulliken charges for the silicons. In bulk silicon, A would be zero. The last row in 

Table 4.1 shows the Mulliken charges from a ~H created by putting the HW ECP Si 3s 

basis functions on a hydrogen nucleus. At a fixed position, this last approach produces 

near neutral Mulliken charges on all atoms in the model system. 

The best match of the Mulliken charge on the central silicon is obtained with ( = 

0.380 on the hydrogen STO-3G basis set, which is close to the value of (obtained by 

Goddard. The best match of the Mulliken charge on all the silicons to bulk-like values is 

obtained for a value of ( = 0.470. Near neutrality on all the atoms in the model system is 

obtained using the Si 3s basis functions. Based solely on this result, one would conclude 

that simply using a valence s orbital from the atom whose electronegativity one is trying 

to match is the best method to create an H~. However, this hypothesis proved to be false 

when additional tests, described in Section 4.5 were performed. 

Table 4.2 shows the results of this same procedure applied to Si5if12, but with the 

addition of d functions to the basis set for the silicon atoms. The addition of d functions 
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c 
Mulliken Charge 

A Si Mull Charge ^center ^*outer H 

1.240 -0.393 +0.580 -0.160 n/a 

0.370 +0.019 -0.548 +0.181 2.194 

0.380 +0.002 -0.489 +0.163 1.958 

0.450 -0.107 -0.113 +0.047 0.550 

0.462 -0.125 -0.056 +0.030 0.348 

0.470 -0.136 -0.019 +0.018 0.213 

0.480 -0.144 +0.025 +0.004 0.243 

0.483 -0.153 +0.024 +0.001 0.305 

0.484 -0.155 +0.045 -0.001 0.326 

0.485 -0.156 +0.112 -0.002 0.335 

0.490 -0.174 +0.112 -0.019 0.582 

Si 3s -0.055 -0.024 +0.013 0.015 

Table 4.1 Mulliken charges on the Si5-ffi2 molecule, HW ECP basis set. Sicenier refers to the 
center atom in Figure 4.3. Siouler refers to any of the four equivalent Si atoms bonded 
to the center atom in this figure. The first row shows the results for using real H 
atoms. 

substantially changes the value of ( needed to produce a neutral Mulliken charge on the 

central silicon. 

c 
Mulliken Charge 

A Si Mull Charge ^center ^louter H 

1.240 -0.283 +0.372 -0.100 n/a 

0.30 
0.485 
0.50 
0.51 
0.52 
0.60 

+0.414 
+0.120 
+0.100 
+0.090 
+0.079 
+0.007 

-1.056 
-0.007 
-0.056 
+0.096 
+0.134 
+0.367 

+0.318 
-0.008 
-0.030 
-0.040 
-0.051 
-0.123 

4.638 
0.147 
0.326 
0.474 
0.615 
1.475 

Table 4.2    Mulliken Charges on the Si5#i2 molecule, HW ECP(d) basis set. 

There are several limitations in this approach to creating Hs. First one must know 

the Mulliken charges for the bulk crystal a priori in order to create the Hs. Defining the 

Mulliken charge for an infinite, single component crystal is trivial; however, one cannot 

predict Mulliken charges for heterogeneous materials. One must calculate Mulliken charges 

on a cluster large enough to give a good representation of a bulk heterogeneous material. 
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Unfortunately, a cluster that satisfies this requirement may be prohibitively large for calcu- 

lations. In addition, one can envision applications in which cluster models are terminated 

with functional groups as opposed to being part of an infinite lattice. Creating Hs from 

bulk-like model systems is inappropriate for these applications. A generic limitation is 

the large Si-iT separation, the Si lattice separation. If one fixed the Si-H separation in a 

cluster model, one may find situations in which TTs bonded to two cluster atoms have to 

occupy the same location. One then has to increase the size of the cluster so that the Hs 

will not overlap. 

44.3 Mulliken Charge Mirror Model . In order to avoid some of the limitations 

of creating ~H$ using the Td model, an alternate procedure was devised. Figure 4.4 shows 

the model system for silicon and carbon used in this procedure. First, one performs an ab 

initio optimization on the full molecule and obtains a set of Mulliken Charges that serve as 

the "right answer" at the selected level of theory. Next, one replaces half of the molecule 

with a single TT located where the silicon bonded to 4 other silicons was. Then, the value 

of C of this TT is adjusted until Mulliken charges on the remaining silicons best matches the 

Mulliken charges from the full system. This model system includes real H atoms as well as 

Si atom, and so does not represent bulk silicon as well as the tetrahedral model. However, 

it is a good model system for terminating a cluster with Si(SiH3)3, which may be adequate 

to represent the bulk. More importantly, it may be possible to create similar model systems 

with a mirror plane of symmetry to create H atoms for heterogeneous materials. This idea 

is explored for silicon carbide in Section 4.7. 

Table 4.3 shows typical values of Mulliken charges obtained using this method with 

the HW ECP basis set. Six is the silicon directly bonded to the H, while Si2 is one of the 

silicons one bond away from the TT (the Mulliken charges on all three of these silicons are 

equal). While the Mulliken charge on the silicon bonded to the H is very sensitive to small 

changes in (, the Mulliken charges on the other silicons in the molecule are fairly insensitive. 

As these silicons are each bonded to 3 hydrogens, their Mulliken charge is dominated by 

the hydrogens. As was discussed in Section 4.3, the variation of the Mulliken charge with 

( is nonlinear. £ = 0.485 best matches the Mulliken charge on Six- 
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Si (SiH3)3 

Mirror 

Si (SiH3)3 

H 

Figure 4.4 

Si (SiH3)3 

Mulliken charge mirror model system used to create H atoms. The H atom 
replaces one-half of the full molecule, and the radial scaling factor ( is adjusted 
until the Mulliken charges on the Si atoms in HSi4E9 are equal to the Mulliken 
charges in Si8H18. 
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c 
Mulliken Charge 

H Sii Si2 

(Full Molecule) -0.322 +0.590 
0.300 +0.544 -0.855 +0.606 
0.400 +0.190 -0.564 +0.589 
0.450 +0.034 -0.407 +0.579 
0.462 +0.001 -0.372 +0.576 
0.470 -0.021 -0.346 +0.574 
0.485 -0.058 -0.309 +0.571 
0.500 -0.093 -0.271 +0.579 
0.600 -0.242 -0.089 +0.549 
0.700 -0.272 -0.025 +0.538 
0.800 -0.224 -0.046 +0.531 
0.900 -0.137 -0.118 +0.530 
1.000 -0.032 -0.216 +0.538 
1.100 +0.075 -0.324 +0.540 
1.200 +0.179 -0.434 +0.551 
1.300 +0.279 -0.542 +0.559 

Table 4.3 Mulliken Charges on the #-Si(SiH3)3 molecule, HW ECP basis set. The row 
labeled Full Molecule shows the Mulliken charges on the equivalent nuclei in 
Si8H18. Si! and Si2 are labeled in Figure 4.4. ( = 0.485 gives the best match 
of the Mulliken charges for the full molecule. 
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c 
Mulliken Charge 

H Sii Si2 

(Full Molecule) -0.251 +0.369 
0.5075 
0.500 
0.490 

-0.211 
-0.193 
-0.167 

+0.226 
-0.249 
-0.283 

+0.405 
+0.408 
+0.411 

Table 4.4 Mulliken Charges on the #-Si(SiH3)3 molecule, 6-31G* basis set. The row 
labeled Full Molecule shows the Mulliken charges on the equivalent nuclei in 
Si8H18. 

Table 4.4 shows the Mulliken charges for the same model system, but calculated 

using a 6-31G* basis set for the silicons. This procedure should produce a H atom that 

could be used to terminate silicon clusters calculated using the 6-31G* basis set. £ = 0.50 

best matches the Mulliken charge on Sii at 6-31G*, quite similar to the HW ECP result. 

4.4.4 Optimum Si-~H separation. In previous work using Hs [8], the S\-H sepa- 

ration was (arbitrarily) fixed at the silicon lattice value while the H was created; however, 

when the Si-St separation was allowed to vary during the optimization of Si9H 12, the op- 

timized Si-TI separation was around 1.7 A. This suggests that one might be able to use 

energy as a criterion to define the optimum Si-H separation in the model system used to 

create the H. Table 4.5 shows the energies and (s obtained at several Si-H separations in 

the model system shown in Figure 4.4. The same match of the Mulliken charge criteria 

was obtained at all 3 separations. The lowest energy is obtained at a separation of 1.70 A; 

however, at this point there is not enough information to decide whether using this sepa- 

ration is better than the other two separations. Additional comparisons are discussed in 

Section 4.5. 

Si-H (A) c Energy (H) 
2.36 
1.70 
1.20 

0.485 
0.515 
0.520 

-20.547155 
-20.591807 
-20.511741 

Table 4.5    Energy as a function of Si-H separation. The Mulliken charge criteria was met 
equally well at all separation values. 
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4-4-5 Bulk Molecular Orbital Model of~H. An IT is a one electron atom created to 

match the electronegativity of a multi-electron atom in order to create a bulk-like chemical 

environment within a finite cluster. The previous approaches for creating an H started 

with a hydrogen atom, and modified the radial scaling of its atomic orbital until a metric 

based on Mulliken charges was met in a model system. Instead of using the Mulliken charge 

and its associated limitations, it seems reasonable to base the construction of the H MO 

on a suitable MO from the bulk material. For example, one could use the Boys localized 

MO between the Si atoms on ether side of the mirror plane in Figure 4.4, take a slice along 

the centerline, and assume that this MO was the sum of two pieces, one from each atom. 

However, one still must decide how to partition this MO, the same problem that occurs 

in the Mulliken population analysis. If both atoms involved in the bonding MO are the 

same, one divides the MO into two equal pieces. If the atoms are different, as they would 

be in silicon carbide, dividing the MO into two equal pieces would be wrong, and it is very 

difficult define the "correct" partitioning. Thus, although using a Boys localized bonding 

MO to construct an ~H avoids many of the problems of the Mulliken analysis, it retains 

the principle problem of partitioning. 

To avoid the partitioning problem, model systems representative of bulk materials 

that possess singly occupied MOs were investigated. Figure 4.5 shows a system that might 

possess a suitable one electron MO, the Si4H9 radical. This radical has a one-electron MO 

whose properties are dominated by the Si-Si bonding environment. The radial properties 

of this MO were used to define a basis function for ~H. It should be noted that this MO 

has a distinctly directional nature, while the Is basis function is spherically symmetric. It 

is unclear at this point what problems this mismatch may cause. 

The following procedure was used to create a single electron MO to create the if atom. 

To match the tetrahedral bonding environment of bulk silicon, the energy of the Si4HJ was 

optimized with the bond and torsion angles fixed at tetrahedral lattice values, with the 

bond distances allowed to vary. Figure 4.6 shows a contour plot of the resulting one electron 

MO calculated by GAMESS with the HW ECP basis set (for consistency with other H 

creation schemes) as well as a radial slice of the MO along its centerline. The centerline 

radial profile of the single electron MO was fit to the following functional form using the 
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Figure 4.5    Si4HJ model system.   The location of the singly occupied MO is nominally 
indicated, i.e., this is not an accurate representation of the MO. 
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Figure 4.6    Si4H* single electron MO contours.   Superimposed is the value of the MO 
along the Z axis. Contours appear distorted due to scaling of axes. 
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analysis program IGOR [116]: 

F(r) = fci * exp(-air2) + k2 exp(-a2r
2) + k3* exp(-a3r

2). (4.14) 

IGOR uses the Levenberg-Marquandt nonlinear least squares curve fitting procedure, with 

the user supplying an initial guess to the parameters in the fit. 

This fitting procedure was first applied to a known test case, a hydrogen atom MO, 

to quantify its performance. Figure 4.7 shows a radial slice of the GAMESS generated MO 

for a hydrogen atom using the STO-3G basis set [24], as well as a 3 Gaussian fit to this MO. 

A comparison of the fit parameters with the GAMESS STO-3G basis set is also listed. The 

0.6- f\ 
0.5- 

\     GAMESS STO-3G Hydrogen 

0.4- 

0.3- 

\                                           +   GAMESS MO 
\                                    — 3 Gaussian Fit 

0.2- \ 

0.1- 

0.0- ^~H"H-H ' ' M I I H I I ! I I I I I-+4- 
h 1 1 1—       i               i 
0                         1                         2      «■„■_■■  3                        *                        5 

r [Bohr] 

IGOR 
3 Gaussian Fit 

GAMESS 
Basis Function 

a 
3.42523 
0.623908 
0.168854 

c 
0.276936 
0.267839 
0.083472 

a 
3.42525 

0.623914 
0.168855 

c (scaled) 
0.2769349 
0.267839 
0.083474 

c (input) 
0.154329 
0.535328 
0.444635 

Figure 4.7    Fitting procedure applied to GAMESS STO-3G hydrogen atom MO. 

three Gaussian fit, which had a Chi Square of 10~12, (the limiting precision of IGOR), shows 

very good agreement to the STO-3G basis set, though one should take careful note that 

fitting the MO reproduces the scaled values of the coefficients.  By convention, Gaussian 
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basis sets are given in the literature in the form: 

G'(a, r) = ^2 ci exp(-aar
2). (4.15) 

i-l 

As part of the normalization process for Is Gaussians, new coefficients are defined as 

C{ = Ci x 
■K 

(4.16) 

The fitting procedure is seen to reproduce the scaled coefficients. Thus in order to obtain 
3 

the proper ratio of the Gaussians in the basis function, one must divide k; by (^)i to 

obtain the proper scaling of the coefficients in GAMESS. 

Figure 4.8 shows the calculated single electron MO in Si4H*, as well as a 3 Gaussian 

fit to this MO. Two sets of fit parameters, obtained with slightly different initial guesses, 

show that the uncertainty in the fit parameters obtained in this procedure is small. Also 

Parameter Fit 1 Fit 2 Uncertainty 
«1 1.100390 1.100410 0.012 
«2 0.206783 0.206757 0.010 
a3 0.068053 0.068053 0.002 
C\ -0.327756 -0.327748 0.004 

C2 0.201936 0.201955 0.007 

C3 0.122519 0.122492 0.009 

Error 0.000106 0.000106 

Figure 4.8    Si4H9 single electron MO. Si nucleus located at r=0. 
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shown in this figure is the input MO from the silicon 3s basis basis function from the HW 

ECP basis set. We see that the MO from S i4H9 has a significantly larger component at 

larger radii than does the silicon 3s basis function. This larger radial extent of the Si4H9 

MO generally correlates with lower electronegativity. This may indicate that the single 

electron MO from Si4H* is not a good model system on which to base definition of a H for 

silicon. 

4-5    Evaluation of Procedures used to make H 

4.5.1 Comparison of Model Systems. In order to determine which of the ap- 

proaches described in Section 4.4 for creating Hs provides the best approximation to the 

bulk silicon environment, these Hs are now substituted for H atoms in the Si9Hi2 silicon 

dimer model system. This same Si9 cage can also be identified within the Si66H52 molecule 

shown in Figure 3.17. In Si66H52, all the atoms in the Si9 cage are at least two bond 

lengths away from the terminating H atom, so the behavior of Si9 within Si66H52 is taken 

to represent bulk silicon. Figure 4.9 shows the Si9 cage, atoms 1-9, with two adsorbed H 

atoms, 10-11. The atom numbers used in the following discussion refer to this figure. The 

term "bare" dimer refers to this cage without the adsorbed H atoms. 

Table 4.6 lists the Mulliken charges for Si9 with a variety of Hs used in place of real H 

atoms. The geometries of the molecules in all these test cases was fully optimized, including 

the Si-H separations, as was done in Reference [8]. The first column in Table 4.6 lists 

the Mulliken charges for hydrogen terminated Si9, and the last column lists the Mulliken 

charges for the corresponding Si atoms in Si66H52. The Mulliken charge distribution in 

Si9Hi2 demonstrates the effect of H atom termination on such a small cluster. The Mulliken 

charge on the second layer atoms and the fourth layer atom is large, positive, and roughly 

equal. All these atoms all are bonded to two Si atoms, and two H atoms; hydrogen's 

larger electronegativity tends to move electron density away from these Si atoms, which 

the Mulliken analysis assigns to the H atoms (the complete structure of Si9Hi2 is shown in 

Figure 3.14). The third layer Si atoms in Si9H12 are each bonded to one H atom and three 

Si atoms, and so are not as strongly influenced by the H atom termination. The "surface" 

Si atoms are bonded only to Si atoms; however, the influence of the H atom termination 
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Figure 4.9    Si9 cage with atom numbers labeled.  Atoms 1-9 are silicons, 10 and 11 are 
hydrogen 

on the second layer also affects the "surface" Si atoms. The net result is that the surface Si 

atoms in Si9H12 have a positive Mulliken charge, in qualitative disagreement with Si66H52. 

Based on the Mulliken charges in Si66H52, ~Ha, ~Hb, and Hd provide "plausible" rep- 

resentations of the bulk silicon electronic environment. The Ha results were taken from 

Reference [8]. 7TC, ~He, and ~Hs do not provide acceptable representation of bulk silicon. 

The result for ~Hj, created by grafting an Si 3s basis function onto a hydrogen nueleus, 

is surprising because 3T/ produced essentially neutral atoms for every atom in the Si5H 12 

model system, the best result for any Tl atom investigated in this work. However, this 

result on the model system was obtained at a Si-if separation fixed at 2.35Ä, while the 

Si-Ife separations optimized to about 1.62. The worst overall result is seen for He, which 

was based on the fit to the single electron MO in Si(SiH3)|. A possible reason for this 

result is that unlike the other model systems, the single electron MO in the radical is not 

involved in bonding , while the other model systems involve H bonded to a silicon. Since 

the H is intended for use in bonding, it appears that the model on which the construction 

of the H is based should be bonded. 
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Mulliken Charge 

H Ha Hi Hc Hd He Hf Si66H52 

Surface Si -0.14 +0.04 +0.09 +0.17 +0.09 +0.36 +0.25 +0.10 

(1,2) 
Layer 2 Si +0.39 -0.12 -0.07 -0.78 -0.18 -2.22 -0.66 -0.21 

(3-6) 
H -0.13 +0.05 +0.13 +0.50 +0.20 +0.98 +0.24 X 

H -0.14 +0.04 -0.12 +0.17 -0.07 +0.97 +0.25 X 

Layer 3 Si +0.02 -0.01 -0.08 -0.35 -0.12 -0.48 -0.06 -0.12 

(7,8) 
H -0.12 +0.06 +0.12 +0.48 +0.18 +0.78 +0.19 X 

Layer 4 Si +0.33 -0.15 -0.13 -0.92 -0.23 -1.85 -0.49 -0.07 

(9) 
H -0.14 +0.06 +0.04 +0.38 +0.08 +0.80 +0.19 X 

c 1.24 n/a 0.485 0.380 0.470 n/a n/a 1.24 

Ha     Reference [8] 
Hb     7?-Si-(SiH3)3 MC Charge Match i 
Hc     Si5 #i2 MC Center Si Match 
Hd     Si5 Hi2 MC All Si Match 
He     (SiH3)3 Radical MO Fit 
Hf     Si 3s 321 Ba sis Functi on 

Table 4.6 Mulliken charges in Si9Hi2 obtained using a number of different H atoms for termi- 
nation in place of hydrogen. The first column labeled H shows the Mulliken charges 
when using H atom termination. The last column shows the Mulliken charges for the 
same 9 Si atoms in S166H52, which can be considered "silicon termination". 

4-24 



4.5.2 Effect of Si-~H Separation. Now that we've seen that the Mulliken charge 

mirror model system can be used to create an "acceptable" H for silicon, we now examine 

the Mulliken charges obtained in Si9#i2 when these various Hs are used for termination. 

These results should indicate whether or not one can determine an "optimum" Sl-H separa- 

tion to use in this model system. Table 4.7 shows the Mulliken charges obtained in S\9H 12 

using the Us described in Section 4.4.4. The subscript indicates the Si-H separation used 

in the model system when the ~H was created. The Mulliken charges on the silicons in 

Si9H12 and Si66H52 are listed in the last two columns of Table 4.7 for comparison. The 

columns labeled "Fixed" are single point energy calculations in which the Si9#12 structure 

is fixed at the Si9#12 RHF optimized geometry, but with the Si-H separations fixed at the 

values used to create the ~H~s (i.e., rSi-#i.70 is fixed at 1.70l). The columns labeled "Opt" 

indicate geometry optimizations of the entire molecule. 

#2.36 #2.36 Hi.ro Hi.ro #1.20 #1.20 

Fixed Opt Fixed Opt Fixed Opt Si9Hi2 S166H52 

Surface Si -0.04 +0.09 +0.12 +0.07 +0.08 +0.07 -0.14 +0.10 

Layer 2 Si -0.03 -0.07 -0.01 +0.16 +0.42 +0.20 +0.39 -0.21 

Layer 3 Si -0.04 -0.08 +0.02 +0.02 +0.31 +0.03 +0.02 -0.12 

Layer 4 Si -0.03 -0.13 0.00 +0.09 +0.35 +0.13 +0.33 -0.07 
r Si-H(Ä) 2.36 1.68 1.70 1.62 1.20 1.62 1.48 n/a 

C 0.485 0.485 0.515 0.515 0.52 0.52 1.24 1.24 

Table 4.7 Mulliken charges in Si9#i2 forjffs created at different Si-H separations in the model 
system, HW ECP basis set. ~H2.36 refers to the H created at an Si-H separation of 
2.36A, etc. The columns labeled Fixed are single point energy calculations with the 
Si atoms fixed at the Si9Hi2 optimized positions and the Si-H separations fixed at the 
Si-IF separation used in the model system. The columns labels Opt are the results 
from optimized Si9fl"i2 geometries. 

The case for iT2.36 in which rSi-# is fixed at 2.36Ä matches the procedure used by 

Goddard et al, though a different model system was used to create the H atom. For this 

case, we see the Mulliken charges on all the silicons differ by only 0.01, and they are all 

very close to 0.0 (neutral). This is the kind of result one would expect for bulk silicon. 

The case for #236 in which rSi-# and the rest of the structure is allowed to optimize 

matches Carter's procedure. The optimized value of rSi-H is 1.68Ä, a difference of 0.68Ä. 

Carter used an rSi-TF of 2.35A in the Si5ITi2 model system; the rSi-# optimized to 1.72Ä 
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in Si9#12. The silicon Mulliken charges obtained for H23e when the geometry is allowed 

to optimize show noticeable changes. The silicons no longer appear equivalent, and the 

top two "layers" now have opposite Mulliken charges. Qualitatively, this result agrees 

with Carter's result (see Table 4.6) and the Mulliken charges for the equivalent Si atoms in 

Si66#52- #1.70 is an Tl atom created in the Mulliken charge mirror model at rSi-^f = 1.70,4. 

The third column lists the Mulliken charges for the silicons in Si9.ff i2 with x$\Hi.70 fixed 

to 1.70Ä. In this case, the silicons do not appear equivalent based on Mulliken charge. 

When the geometry is allowed to optimize( column 4), the Si Mulliken charges all become 

positive. The optimum Si-iT separation in this case is 1.62Ä. The Mulliken charges for 

the case using iTi.2o at a fixed rSi-# of 1.20Ä are clearly not equivalent. The Mulliken 

charges obtained using ITi.2o but allowing the geometry to optimize are smaller, but are 

neither equivalent nor match the charges in Si66H52. 

The Mulliken charges obtained by using IT2.36 to terminate Si9Hi2 while keeping the 

Si-# separation value make the most sense. The H was created to represent the electronic 

environment of bulk silicon. When it is used to terminate a silicon cluster, the Mulliken 

charges on all the silicons are all very close to zero, which is what one expects for bulk 

silicon. However, these Mulliken charges are not the best match for the Mulliken charges 

in Si66H52. There are two possible explanations for this result. Si66H52 may be too small 

to give a good representation of bulk silicon, or a bulk-like model system is inappropriate 

for creating iTs to terminate surface model clusters.Before attempting a calculation on a 

larger silicon cluster, we shall examine how the use of H based on Mulliken charges affects 

other molecular properties such as geometry and hydrogenation energetics. 

Table 4.7 shows how large an effect the Si-if separation has on the Mulliken charges. 

Recall from Table 4.1 that ~H32i made all the atoms in Si5iT12 essentially neutral. Table 4.6 

showed that the Mulliken charges in Si9#12 using #321 while allowing the Si-H separation 

to vary produced Mulliken charges that did not match Si66H52. Table 4.8 shows a compar- 

ison of the Mulliken charges in Si9#i2 using #321 with the Si-H fixed at 2.36Ä, the results 

for the optimized geometry, and the results for Si66H52. With the Si-H separation fixed, 

the Mulliken charges are similar to those in Si66H52, but show differences in the third and 

fourth layers. 
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Hsi3s Hsi3s 
Fixed Opt Si9H12 Si66ll52 

Surface Si 0.005 +0.25 -0.14 +0.10 
Layer 2 Si -0.06 -0.66 +0.39 -0.21 
Layer 3 Si -0.03 -0.06 +0.02 -0.12 
Layer 4 Si -0.05 -0.49 +0.33 -0.07 
r Si-JT(A) 2.36 1.68 1.48 n/a 

Table 4.8    Mulliken charges in Si9#i2 using Hs&s at fixed and optimized Si-H separations. 

4.5.3 Discussion on Us. What can we conclude from these results ? It appears 

that different approaches can be used to create H atoms that behave roughly the same 

when used to terminated Si9, at least in terms of Mulliken charges. Si-iT separation has 

a significant effect on the Mulliken charges. The best matches of the Mulliken charges in 

Si66H52 were produced in Si9IT12 using Ä236 when the geometry of Si9#i2 was optimized. 

However, the large change in the Si-# separations observed in these optimizations, 2.36Ä 

to 1.68A, makes one wonder what other effects the optimization has had on the molecule. 

I.e., other than matching Mulliken charges, how good a model of bulk silicon is SiQHi2 ? 

Based on the results at this point, Goddard's procedure, keeping the Si-H separation fixed 

at the same value everytime a H is used, is the most consistent in that all the silicons in 

Si^Hi2 have Mulliken charges that are close to bulk silicon values. 

4.6    Detailed Evaluation of MC Mirror H 

The results in Table 4.6 show that one can obtain a reasonable match to the Mulliken 

charges of a bulk-like silicon molecule by using Hs to terminate a small silicon cluster. 

However, it is unclear what effect the use of Hs has on other properties of the cluster, so 

additional comparisons, must be made. The U atom created using the Mulliken charge 

mirror model, ( = 0.47, was selected for additional evaluation because this H performed 

well in matching Mulliken charges of the bulk silicon model, and because the Mulliken 

charge mirror model has potential to be used for other materials. To provide a more 

complete picture of the effects of H termination, optimized molecular geometry, energy of 

hydrogenation, and ionization energy with and without H termination will be compared. 

The use of H~s in MIMOMM optimizations will also be investigated. 
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Table 4.9 lists a summary of the calculations performed compare the behavior of 

Si9Hi2 and Si9~H12 to see if H termination does make this small silicon cluster better 

reproduce the behavior of Si66H52, which is taken to represent bulk silicon. In Table 4.9, 

the term "bare" dimer refers to a dimer with two dangling bonds, as shown in Figure 3.14. 

The label "half-hydrogenated" dimer refers to a dimer in which one of the dangling bonds 

has been saturated by an adsorbed H atom, as shown in Figure 4.12. The label "fully 

hydrogenated" dimer refers to a dimer in which both of the dangling bonds have been 

saturated by adsorbed H atoms, as is shown in Figure 4.9. 

Test Cases for H Evaluation 

Cluster 
Calculation 

Method Model 
Hydrogen Termination 

Si9H12 

Si9Hi2H 
Si9Hi2H2 

Si9Hi2/Si66H52 

ab initio 
ab initio 
ab initio 

MIMOMM 

Si dimer, bare 
Si dimer, half-hydrogenated 
Si dimer, fully hydrogenated 
Si dimer, bare 

H Termination 
Si9fT12 

Si9^Ti2H 
Si9Hi2R 
Sig-ff 12/Si66H52 

ab initio 
ab initio 
ab initio 

MIMOMM 

Si dimer, bare 
Si dimer, half-hydrogenated 
Si dimer, fully hydrogenated 
Si dimer, bare 

"Silicon Termination" 
Si66H52 

Si66H52H 

S166H52H2 

ab initio 
ab initio 
ab initio 

Si dimer, bare 
Si dimer, half-hydrogenated 
Si dimer, fully hydrogenated 

Table 4.9 Test cases used to evaluate the effect of effect of H termination on small silicon 
clusters. The results from calculations on Si66H52, Si66H52H, and Si66H52H2 are 
taken to represent bulk silicon, i.e., the right answer. 

4.6.I Mulliken Charges. Tables 4.10 and 4.11 show the Mulliken charges for 
the bare and hydrogen saturated dimer in the Si9 embedded cluster. The results can be 
summarized as: 

• As discussed in Section 4.5, use of H terminated Si9 with TS\-H allowed to optimize 
provides a better match of the Mulliken charges in Si66H52 than hydrogen termina- 
tion. 

• MIMOMM optimization has no effect on the Mulliken charges in the II terminated 
cluster, and a small effect on Mulliken charges in the H terminated cluster. 

4-28 



• Hydrogen saturation of the dimer substantially changes the Mulliken charges at the 
surface. Tl termination provides a better match of Mulliken charges in the bulk-like 
molecule than H termination 

• MIMOMM optimization causes a small change (0.01) in the magnitude of the Mul- 
liken charges in the H and if terminated clusters, but does not change the overall 
trends 

Mulliken Charges 
Ab Initio Ab Initio MIMOMM MIMOMM Ab Initio 

Embedded Si9H12 Si9 Hu SigH12 Si9iTi2 Si66H52 
Bulk None None Si66H52 Si66ll52 None 

Surface Si -0.14 +0.09 -0.14 +0.099 +0.10 
Layer 2 Si +0.39 -0.12 +0.39 -0.099 -0.21 
Layer 3 Si +0.02 -0.08 +0.01 -0.084 -0.12 
Layer 4 Si +0.33 -0.13 +0.35 -0.119 -0.07 

Table 4.10    Comparison of Mulliken Charges, Bare Dimer (HW ECP basis set), in al 
initio and MIMOMM optimized systems. 

Mulliken Charges 
Ab Initio Ab Initio MIMOMM MIMOMM Ab Initio 

Embedded Si9Hi4 Si9^12H2 Si9Hi2H2 Si9flri2H2 S166H54 

Bulk None None Si66H54 S166H54 None 
Surface Si +0.02 +0.25 +0.02 +0.276 +0.21 

Adsorbed H -0.10 -0.08 -0.14 -0.086 -0.04 
Layer 2 Si +0.36 -0.12 +0.37 -0.148 -0.23 
Layer 3 Si +0.00 -0.09 0.00 -0.099 -0.14 
Layer 4 Si +0.34 -0.10 +0.34 -0.112 -0.08 

Table 4.11    Comparison of Mulliken Charges, hydrogenated Dimer (HW ECP basis set), 
in ab initio and MIMOMM optimized systems. 

The results in Tables 4.10 and 4.11 were obtained using the HW ECP basis set for 

two reasons: to facilitate comparisons with previous ECP basis set results, and to enable 

full ab initio calculations on Si66H52. However, better basis sets are required for more 

reliable results. Since the value of ( for an H atom depends on the basis set, a different 

IT must be created for each basis set. An H atom was created using the Mulliken charge 

mirror model system with the 6-31G* basis set for use in 6-31G* calculations (Table 4.4). 

Table 4.12 shows the Mulliken charges obtained in Si9iTi2 calculated with the 6-31G* basis 

set, as well as HW ECP basis set results for Si66H52. Comparing the H atom terminated 
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Si9 results at the HW ECP and 6-31G* basis sets, we see that while the magnitude of 

the Mulliken charges changes, the qualitative behavior remains the same. However, the 

Mulliken charges obtained using H termination and the 6-31G* basis set are quantitatively 

and qualitatively are different than both the HW ECP results using H termination, and 

the Mulliken charges in Si66H52 using the HW ECP basis set. 

Mulliken Charges 

Si9H12 Si9 #12 Si9H12 si9ir12 Si66H52 

HWECP HWECP 6-31G* 6-31G* HWECP 

Surface Si -0.14 +0.09 -0.17 +0.001 +0.10 
Layer 2 Si +0.39 -0.12 +0.26 +0.75 -0.21 
Layer 3 Si +0.02 -0.08 +0.02 +0.40 -0.12 
Layer 4 Si +0.33 -0.13 +0.25 +0.75 -0.07 

Table 4.12    Comparison of Mulliken Charges, bare dimer, for H atoms created to be used 
with the 6-31G* basis set. 

The differences between the HW ECP and 6-31G* results highlight the basis set 

dependence of the Mulliken population analysis. The extra flexibility provided by the 

larger 6-31G* basis set makes the Mulliken partitioning of charges less appropriate, and 

suggests that use of ITs created using Mulliken charge as a metric is unreliable for larger 

basis sets. 

4.6.2 Structure. A comparison of the HW ECP optimized structures of Si9Hi2 

and Si9#12 is listed in Table 4.13. (The atom numbers are defined in Figure 4.9.) A 

comparison of Si atom displacements from lattice positions caused by formation of the 

surface dimer is listed in Table 4.14. We saw in Chapter III that the geometry and atom 

displacements of Si9Hi2 gave a reasonable representation of the geometry and displacements 

caused by dimer formation from both larger scale calculations and experiment. Here, we 

see that H termination produces a significantly different structure. The motion of the 

second layer atoms in Si9i7i2 along the y axis is approximately a factor of 6 smaller than 

in Si9Hi2. The motion of the third layer atoms along the z axis is down in Si9Hi2, but up 

in Si9i7i2. The fourth layer atom in Si9H12 moves 0.008Ä up along the z axis, while in 

Si9iT12, this atom moves up 0.314A. Similar results for the hydrogenated dimer are listed 
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in Table 4.15. Similar distortions in cluster geometry are seen when H atoms are used for 

termination. 

These results can be summarized as: 

• The structure of real hydrogen terminated Si9 matches the structure of Si66H52 better 
than H terminated Si9 

• The differences seen in H terminated Si9 are significant because a silicon cage should 
be a fairly stiff system 

• The MIMOMM optimized structure of Si9Hi2 differs slightly from the ab initio opti- 
mized results (as was discussed in Chapter III) 

• The steric forces in the MIMOMM optimization have a larger effect on H terminated 
Si9, and drive the coordinates closer towards the values seen for Si66H52. However, 
significant differences between the hybrid optimizations and the ab initio optimized 
geometry of Si66H52 remain 

Table 4.16 shows a comparison of the optimized geometries obtained for Si9H 12 using 

the TTs created at several different separations in the Mulliken charge mirror model, H2.36, 

#1.70, and #i.2o- The optimized geometries for all three Hs are very similar, and all show 

significant differences from the structures of Si9H12 and Si66H52. 

Lastly, Tables 4.17 and 4.18 show a comparison of the optimized geometries and 

atom diplacements obtained using the H atom created to match the 6-31G* basis set. We 

see that the overall results are the same as obtained using the HW ECP basis set: the 

geometry of Si9H12 matches other theoretical results and experiment better than Si9#12. 

Figures 4.10 and 4.11 show the optimized geometries of Si9Hi2 and Si9#i2 (respectively). 

In addition to the differences in the Si positions, these figures also highlight the differences 

in H-Si-H and H-Si-H angles in these cases. 
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A6 Zniiio Ab Initio MIMOMM MIMOMM Ab Initio 
Embedded Si9H12 SigHu Si9H12 S19H12 Si66H52 

Bulk None None Si66H52 S166H52 None 
Dimer (A) 2.170 2.182 2.172 2.178 2.160 

Z 3 1 4° 114.658 100.682 115.021 104.020 118.010 
Z 3 1 2° 107.724 109.997 107.502 108.630 106.948 
Z 3 7 5° 98.381 109.805 98.404 105.295 97.616 
Z 79 8° 116.979 119.223 115.049 115.020 114.141 

Table 4.13    Comparison of Si9 structure, bare dimer, HW ECP basis set. RHF results are 
listed. 

Atom 
Atom Displacements (Ä) 

H termination H termination 
«X £y Sz 6x *y 8z 

Surface 
0.000 
0.000 

0.829 
-0.829 

-0.214 
-0.214 

0.000 
0.000 

0.823 
-0.823 

0.020 
0.020 

1 
2 

Layer 2 
0.055 

-0.055 
0.055 

-0.055 

0.115 
0.115 

-0.115 
-0.115 

0.098 
0.098 
0.098 
0.098 

-0.104 
0.104 

-0.104 
0.104 

0.017 
0.017 

-0.017 
-0.017 

0.109 
0.109 
0.109 
0.109 

3 
4 
5 
6 

Layer 3 
0.113 

-0.113 
0.000 
0.000 

-0.098 
-0.098 

0.105 
-0.105 

0.000 
0.000 

0.149 
0.149 

7 
8 

Layer 4 
0.000 0.000 0.008 0.000 0.000 0.314 9 

Table 4.14    Atom displacements induced by symmetric dimer formation in the Si9Hi2 model of 
the Si(001) surface, HW ECP basis set. 
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Figure 4.10    Si9Hi2 6-31G* optimized geometry (side view) 

Figure 4.11    Si9#12 6-31G* optimized geometry (side view) 
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Ab Initio Ab Initio MIMOMM MIMOMM Ab Initio 
Embedded Si9H14 SigHi2B.2 Si9Hi2H2 Sigjff^H^ S166H54 

Bulk None None Si6öH54 SI66H54 None 
Dimer(Ä) 2.381 2.418 2.394 2.412 2.392 

Si-Hads(A) 1.473 1.469 1.473 1.469 1.472 
L 1 2 H°ds 112.851 113.857 112.442 114.955 112.195 

Z 3 1 4° 105.492 94.904 108.407 98.190 110.122 
Z 3 1 2° 104.938 106.483 104.326 104.992 103.800 
Z 3 75° 99.903 110.207 99.016 104.956 98.047 
Z 798° 111.653 114.272 111.839 112.380 111.113 

Table 4.15    Comparison of Si9 structure with two H atoms adsorbed on the dimer, HW 
ECP basis set. RHF results are listed 

#2.36 #1.70 #1.20 Si9Hi2 Si66H52 
Dimer (Ä ) 2.182 2.178 2.177 2.170 2.160 

Z 3 1 4° 100.682 100.870 100.929 114.658 118.010 
Z 3 1 2° 109.997 110.178 110.207 107.724 106.948 
Z 3 75° 109.805 109.700 109.705 98.381 97.616 
Z 79 8° 119.223 118.440 118.292 116.979 114.171 

C 0.485 0.515 0.520 1.24 n/a 

Table 4.16     Comparison of Sig ab initio optimized structure, unsaturated dimer using Hs created 
at different Si-if separations in the model system (HW ECP basis set, RHF results). 
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Si9H12 Sig .ff 12 Si66H52 
6-31G* 6-31G* HWECP 

Dimer(Ä ) 2.187 2.188 2.160 

L 3 1 4° 116.495 100.982 .   118.010 

L 3 1 2° 107.299 111.031 106.948 

L 3 7 5° 97.552 112.700 97.616 

Z 79 8° 117.460 120.629 114.171 

Table 4.17    Effect of H termination on Si9H12 ab initio optimized geometry, 6-31G* basis 

set. 

Atom 

Atom Displacements (A) 

H termination H termination 

Sx Sy Sz Sx Sy S z 

Surface 
0.000 
0.000 

0.850 
-0.850 

-0.254 
-0.254 

0.000 
0.000 

0.850 
-0.850 

-0.116 
-0.116 

1 
2 

Layer 2 
0.065 

-0.065 
0.065 

-0.065 

0.144 
0.144 

-0.144 
-0.144 

0.098 
0.098 
0.098 
0.098 

-0.118 
-0.118 
-0.118 
0.118 

-0.003 
-0.003 
0.003 
0.003 

0.020 
0.020 
0.020 
0.020 

3 
4 
5 
6 

Layer 3 
0.104 

-0.104 
0.000 
0.000 

-0.099 
-0.099 

0.121 
-0.121 

0.000 
0.000 

0.126 
0.126 

7 
8 

Layer 4 
0.000 0.000 0.023 0.000 * 0.000 0.315 9 

Table 4.18 Atom displacements induced by symmetric dimer formation in the Si9Hi2 modej_of 
the Si(001) surface, RHF 6-31G* basis set. The atom displacements for the SigH^ 
qualitatively and quantitavely disagree with calculated displacements in SigHiz- 
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4-6.3 Energetics. Another check on the effect of H termination is to look at 

the energy of hydrogenation of the silicon dimer. Nachtigall et al [83] performed a series 

of calculations including correlation corrections on the energy of hydrogenation of Si9H12. 

For comparison, the energies for the same reactions of Si9Hi2 using the HW ECP basis 

set with d functions on all silicons for both the hydrogen and H terminated clusters were 

calculated in this work. For comparison with bulk silicon, the same reactions have been 

modeled on Si66H52 (Figure 3.17). Si66H52 has only a single unsaturated surface dimer, so 

it provides a good comparison for hydrogenation of Si9Hi2, which is a model of a single 

surface dimer. 

Table 4.19 lists the energies of the final states used to calculate the reaction en- 

ergetics. The HW ECP basis set with d functions was used for all the Si9Xi2 (X=H or 

~H) molecules. Use of the HW ECP plus d basis set for Si66H52 gives a total of 1028 

atomic orbitals, which is prohibitively large for an optimization. To reduce the size of 

the calculation, d functions were only placed on the 9 silicon atoms common to Si9Hi2, 

giving a total of 686 AOs for Si66H52. With a numerical Hessian (calculated with the 

AMI [41] semi-empirical method), the RHF optimization of Si66H52 (and Si66H54) took 

approximately 14 hours on 32 nodes of an IBM SP2 using C2V symmetry. Si66H53, because 

it has only Cs symmetry, took 31 hours on 32 nodes of an SP2. Since the implementation 

of semi-empirical calculations in GAMESS does not include gradients for the Generalized 

Valence Bond (GVB) technique, the GVB-PP(l) optimization of Si66H52 used a numerical 

Hessian, which resulted in the lengthy optimization time of 100 hours on 32 SP2 nodes 

even with C2v symmetry. 

The results from this work, as well as those from Reference [83] are listed in Ta- 

ble 4.20. Nachtigall et al's calculations were performed at a higher level of theory than 

the calculation in this work, so their hydrogenation energies are larger. However, both 

Reference [83] and the present calculations on Si9Hi2 predict a larger energy for the ad- 

dition of the second hydrogen than the first. The calculations on Si9#i2 predict that the 

energy of hydrogenation for each H atom is roughly the same. The calculations on Si66H52 

also predict a larger energy for the addition of the second hydrogen than the first. So, the 
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Molecule Model Symmetry Energy (H) 

Si9H12 
JRHF C-2^ -40.928623 

Si9H12 
3UHF C?v -40.932507 

Si9Hi2 XTCSCF Ci -40.960589 

Si9H13 
2ROHF cs -41.559510 

Si9H14 ^HF &2v -42.169727 

Si9üTi2 1RHF C21; -39.190375 

Si9-ffi2 
3UHF C2u -39.206553 

Si9jffi2 ^CSCF Ci -39.227388 

Si3H12R 2ROHF cs -39.836747 

Si9jy12H2 iRHF c2j; -40.444197 

Si66H52 ^HF C2« -278.552983 

Si66H52 GVB-PP(l) ^2v -278.586510 

Si66H53 
2ROHF cs -279.189470 

S166H54 
XRHF C2u -279.799806 

H 2ROHF n/a -0.496979 

H2 
JRHF Ci -1.121680 

Table 4.19    State energies used to calculate energy of hydrogenation, H and H terminated 
molecules. 

predicted hydrogention energetics from a small H terminated silicon cluster agrees better 

with the bulk silicon model system than the H terminated silicon cluster. 

A E (kcal/mole) 
X=Si9R~i2 Si9H12 Si9-ffi2 Si66H52 

Ref [83] 

XH2 ->    XH + H 81 71 69 71 

XH ->    X + H 76 63 71 66 

XH2 -»•    X + H2 56 54 59 57 

Table 4.20    Comparison of energy of hydrogenation, H and H terminated molecules. 

In addition to the differences in energy, the H terminated optimization of Si9.ff i2H 

also produced a structure with a noticeable amount of distortion in the silicon cage, shown 

in Figure 4.13. A similar distortion was not seen in the hydrogen terminated cluster 

Si9H12H. 

4.6.4 Ionization Potential. Redondo and Goddard [7] used the ionization poten- 

tial (IP) of the Si(SiH3)3 radical as an additional test of the ability of Hs to mimic the 
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Figure 4.12    Si9Hi2H optimized geometry, Cs symmetry. 

Figure 4.13    Si9#i2H optimized geometry, Cs symmetry. 
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Reference   [7] This Work 
C         IP (eV) c IP (eV) 

H atom H atom 
1.24         7.90 1.24 7.83 

E H 
0.2944       5.95 0.60 

0.485 
0.380 
0.30 

8.81 
8.02 
6.97 
6.05 

Table 4.21 Ionization potential of a silicon dangling bond in Si(SiH3)3 and Si(SiüT3)3 as a func- 
tion of radial scaling parameter, HW ECP(d) basis set. C = 0.485 produced the 
smallest deviation from neutrality for all the Si atoms in the Si5Hi2 bulk silicon 
model. (Table 4.2) £ = 0.60 satisfied Goddard's criteria for neutrality on the central 
Si atom in this work for the HW ECP(d) basis set. C, = 0.38 satisfied this criterion 
for HW ECP basis set. £ = 0.30 was used to compare with Goddard's value of £. 
Bulk silicon IP is 5.5-5.9 eV [7]. 

electronic environment of bulk silicon. To compare the present work with Reference [7], 

we shall look at some IP results using Hs created using Redondo and Goddard's tetrahral 

model system. The ionization potential for this molecule is defined as 

IP = E(Si(SiX3)3
+) - E(Si(SiX3)3*), (4.17) 

where X is either a hydrogen atom or a H. To simulate bulk silicon, the bond angles are 

fixed at lattice (tetrahedral) values, though the Si-Si separation are allowed to vary. For 

the H terminated radicals and ions, the Si-iT separation was kept fixed at Si-Si lattice 

separations. For the hydrogen terminated molecule, the Si-H separation is allowed to vary. 

For the H terminated molecule, the S\-H separation is fixed at the Si-Si lattice value. 

A comparison of the results from Reference [7] and this work is listed in Table 4.21. 

We see that the 7T that provided the best match for neutrality for all the Si atoms in the 

tetrahedral bulk silicon model system, Si5H12 (all values are taken from Table 4.2), with 

a value of ( = 0.485, produces a larger IP than the hydrogen terminated system. ( = 0.60 

is the value obtained in this work that achieves (near) neutrality on the central silicon in 

the Si5JT12 model system, i.e., satisfies Redondo and Goddard's criterion. ( = 0.60 gives 

a larger IP than the hydrogen terminated system.  ( = 0.30 was selected because it was 
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close to the value used in Reference [7]. While ( = 0.30 produces an IP quite close to that 

found in Reference [7] and experiment, ( = 0.30 produced a Mulliken charge of +0.414 on 

the central silicon in SiJT12, and Mulliken charges of -1.056 on the other 4 silicons. 

The observation that the IP is not a linear function of ( is a consequence of the 

fact that the electronegativity of a hydrogenic Is basis function is a quadratic function of 

( (see Figure 4.2). The reason for the differences between the IP results in this work and 

Reference [7] are unclear. However, it is very disconcerting that an IP calculated using 

an TT that was shown to produce bulk-like Mulliken charges in Si9 is larger than the IP 

calculated using hydrogen atoms. 

As an additional test, the IP of a dangling bond in Si9H12 and Si9H12 (( = 0.485) 

were also calculated. Because removal of a dangling bond creates a significant change 

in the overall electronic configuration of this molecule, full geometry optimizations were 

performed for both cases. For Si9Hi2, the calculated IP is 6.94 eV, about 1 eV larger than 

the experimental value. For Si97T12, the calculated IP is 7.45 eV, larger than both the 

experimental and hydrogen terminated calculated value. 

4.6.5    Discussion of Silicon Hs.      Summarizing the results on Hs: 

• Mulliken charges with TT termination and variable Si-if separations agree better with 
bulk-like results than with hydrogen termination using the HW ECP basis set 

• Mulliken charges with TT termination and variable Si-H using the 6-31G* basis set 
do not agree better with bulk-like results than H atom termination 

• Optimized geometries with H termination agree better with calculated bulk results 
(on Si66H52) and experiment than with H termination 

• Energies of hydrogenation of a silicon dimer with H atom termination agree better 
with bulk-like results than H termination 

• Ionization potentials with Tl termination are slightly higher than results using hy- 
drogen termination. Both results are significantly larger (around 50 kcal/mole) than 
experimental results for bulk silicon. 

The Tl atoms used in this study were constructed using Mulliken charges as a cri- 

terion, and they do indeed produce Mulliken charges in small clusters that agree better 

with bulk-like results, though this advantage disappears at larger basis sets. For the other 

properties listed above, which do not have the ambiguity of the Mulliken analysis, H 
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termination does not reproduce bulk-like results for small clusters better than H atom ter- 

mination when the Si-~H separation is allowed to vary. These results greatly diminish the 

confidence one would have in calculations that use H termination. H atom termination, 

with the caveat that the H termination will hamper correlation of small cluster results 

with bulk results, is the preferred solution. 

4-7    Terminating Silicon Carbide 

The results from the attempts to create IT atoms show that not fixing the Si-H sepa- 

ration in a Si cluster optimization produces questionable results. Freezing Si-H separations 

in the cage-like clusters used in this research is not possible because the partial implemen- 

tation of delocalized coordinates in GAMESS does not include this feature. However, 

creation of Et atoms to terminate SiC can still be investigated. 

4.7.1    Mulliken Population of SiC. Determining a metric based on Mulliken 

charges for bulk silicon or diamond is trivial. In both materials, all atoms are equivalent, 

and since they are all the same type, the Mulliken charge on each should be 0.0. The 

Mulliken charges in bulk SiC aren't clear. Orlando et. al. performed periodic Hartree 

Fock optimizations on a number of bulk semiconductors, including SiC using the program 

CRYSTAL [104]. With the 6-21G* basis set, they report Mulliken charges of ±1.81 (!)for 

silicon and carbon (respectively) in SiC, with an uncertainty of ±0.2 [117]. These Mulliken 

charges are huge, especially for a covalent material like SiC. Sabisch et al [118] report 

Mulliken charges from a DFT calculation on SiC of ±0.14, but it is unclear how Mulliken 

charges from a DFT calculation compare with HF. 

Since cluster models are used in this work, Mulliken charges on a moderately large 

sized SiC cluster, Si18C18H42, were calculated using a number of basis sets. The geometry 

of Sii8C18H42 was first optimized using the 6-31G* basis set, and single point energy 

calculations using different basis sets were performed at the 6-31G* geometry to obtain 

Mulliken charges. The 6-31G* optimzed geometry of Si18C18H42 is shown in Figure 4.14. 

Included in this figure is a listing of the Mulliken charges from the HW ECP, HW ECP(d), 

6-31G*, DZP, and TZP basis sets.    (This molecule has C3 symmetry, so only unique 
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Mulliken charges are listed.) Here, we see how strongly the Mulliken charge depends on 

basis set. The largest Mulliken charges are obtained from the HW ECP basis set, the only 

one used without d functions. The Mulliken charges from the basis sets that included d 

functions are smaller than the HW ECP charges, and smaller than Orlando et al's result, 

but are still very large. In addition, we see that the Mulliken charges for a C or Si atom 

depend on the atom's location within the molecule. For a bulk material, one expects all 

atoms of the same type to have the same properties. 

4.7.2 Creating H Atoms for SiC: Equivalence. Reconciling the Mulliken charge 

with any physical properties is difficult if not impossible for a highly polar material like 

SiC. However, all atoms of the same type should be equivalent in a bulk material. Instead 

of trying to match some value of the Mulliken charges to some physically realistic value, 

one can use equivalence, and seek to create HSi and Hc atoms that make all the Si and C 

atoms in an SiC cluster equivalent. However, one needs to design a model system for this. 

A modified version of the Mulliken charge mirror model was first investigated for 

creating HSi based on equivalence. For SiC, the model system has the same configuara- 

tion as that shown in Figure 4.4. However, C atoms are now substitutued in alternating 

"layers", resulting in the chemical formula 

(SiH3)3-C-Si-(CH3)3. 
Table 4.22 shows the results from this procedure for the ifSi(CH3)3 molecule. A good 

match of the Mulliken charge for the full molecule was not found in varying ( over a wide 

range of values. We conclude that this model is unsuitable for creating Hs for SiC using 

the Mulliken charge mirror procedure. 

Designing a model system to create H atoms for SiC is more difficult than designing 

a model system for silicon. The bulk-like model cluster Si5H12 was attractive because its 

Td symmetry greatly reduced computation times. One could adapt Si5H12 for SiC, making 

SiC4Hi2 and CSi4H12. However, the 4 to 1 ratio of Si to C (or C to Si) atoms in these 

clusters is a poor match of the 1 to 1 ratio of bulk SiC, and is a poor representation of the 

bulk. Extending this tetrahedral model out one additional layer would produce SiC4Si12H36 
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Mulliken Charges 
Atoms Type HWECP HW ECP(d) 6-31G* DZP TZP 

1-3 Si 1.566 1.102 0.812 1.034 0.774 
4-6 C -1.604 -1.174 -0.932 -1.262 -0.957 
7-9 C -1.312 -1.017 -0.820 -1.004 -0.873 

10-12 Si 1.587 1.028 0.845 1.107 0.713 
13-15 Si 1.258 0.854 0.717 0.892 0.698 
16-18 C -1.894 -1.313 -1.029 -1.568 -0.870 
19-21 Si 2.014 1.428 1.085 1.354 0.958 
22-24 C -1.655 -1.215 -0.988 -1.299 -1.025 
25-26 C -1.352 -1.058 -0.854 -1.055 -0.871 
28-30 Si 1.565 1.046 0.810 1.039 0.721 
31-33 Si 1.236 0.855 0.683 0.873 0.675 
34-36 C -1.583 -1:159 -0.910 -1.236 -0.933 

Energy(H) -770.081 -770.905 -5907.055 -5907.214 -5907.577 
Basis Functions 390 498 696 786 972 

Figure 4.14 SiigCigtL^ molecule evaluated as a model system for creation of Hs. (6-31G* 
optimized geometry shown) Molecule has C3 symmetry, so only unique Mulliken 
charges are listed. 
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c 
Mulliken Charge 

H Sii c2 
(Full Molecule) +1.826 -1.027 

0.40 
0.50 
0.60 
0.70 
0.80 
0.90 

+0.230 
-0.166 
-0.405 
-0.461 
-0.402 
-0.293 

+0.796 
+1.179 
+1.441 
+1.532 
+1.503 
+1.417 

-0.974 
-0.963 
-0.976 
-0.984 

-0.988 
+0.987 

Table 4.22 Mulliken Charges in the #Si(CH3)3 molecule, HW ECP basis set. The row 
labeled Full Molecule shows the Mulliken charges on the equivalent nuclei in 

(SiH3)3CSi(CH3)3 

and CSi4C12H36. SiC4Sii2H36 is shown in Figure 4.15. The ratio of Si to C atoms in these 

clusters is approximately 3 to 1, better but still too large. A bigger problem with this 

model can readily be seen in Figure 4.15. In lengthening the Si-# and C-H separations 

to 1.892, the SiC lattice separation, the H atom positions are so close that their mutual 

interactions will be significant. Si18Ci8H42 (Figure 4.14) contains an equal number of Si 

and C atoms. However, this cluster has only C3 symmetry, so the computation time for 

each attempt in the process of creating a H would be lengthy. In addition, one would have 

to simultaneously create ~HSiS and Hcs if Sii8Ci8H42 were used as a model system. The 

consequences of this added complication are unclear. 

As an alternative to creating two types of H atoms in an SiC model system, one 

could use TTsi and Hc atoms created in homogeneous model systems. Table 4.1 presented 

the Mulliken charges as a function of ( for Si5#i2 for the HW ECP basis set. Table 4.1 

presented similar results for the HW ECP(d) basis set. Here, Table 4.23 lists these results 

for C5TT12 for the HW ECP basis set. (The specification for carbon is the same in both 

the HW ECP and HW ECP(d) basis sets.) Now we define the optimum value of ( as the 

value which produces equal Mulliken charges in all the Si or C atoms in the model system 

(makes all the atoms look equivalent, as they would in a bulk material). For Si using the 

HW ECP basis set, ( = 0.45 satifies this criterion, and for C ( = 0.7 satifies this criteria. 

As we also see in Table 4.1, the H created by grafting the Si 3s basis function onto a 

hydrogen nucleus also satifies the equivalence criterion.  For C using the HW ECP (and 
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Figure 4.15    SiC4Sii2H36 tetrahedral model for bulk SiC. Notice that the H are very close to 
each other in this cluster. 
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HW ECP(d)) basis set, ( = 0.7 makes the C atoms equivalent. Also seen in this table is 

that grafting the C 2s basis function onto a hydrogen nucleus doesn't meet the equivalence 

criterion as well as was seen for silicon, but works fairly well. 

c 
Mulliken Charge 

^center ^outer H 

1.24 -0.353 -0.450 0.132 

0.40 
0.43 
0.45 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

0.030 
-0.002 
-0.022 
-0.066 
-0.150 
-0.233 
-0.307 
-0.360 
-0.383 

-1.082 
-0.976 
-0.908 
-0.743 
-0.450 
-0.230 
-0.098 
-0.061 
-0.116 

0.358 
0.326 
0.304 
0.253 
0.163 
0.096 
0.058 
0.051 
0.071 

C 2s -0.221 -0.302 +0.119 

Table 4.23 Mulliken charges on the C5#i2 molecule, HW ECP basis set. The geometry of C5.ff i2 

is the same as Si5ff12 shown in Figure 4.3, with the bond distances shortened from 
2.351 to 1.541.Ccenter refers to the center atom; Couter refers to any of the four 
equivalent C atoms bonded to Ccenter- 

From Table 4.1, we see that C=0.45 produces equal Mulliken charge of-0.11 in Si5Hi2 

for the HW ECP basis set. For HW ECP(d), C=0.51 produces equal Mulliken charges in 

Si5Hi2. A value of (=0.70 was found to produce equal Mulliken charges in C5H12 for the 

HW ECP basis set. 

To evaluate the utility of this approach for creating H atoms for terminating SiC, 

the H atoms-described above were used to terminate the Sii8C18H42 shown in Figure 4.14. 

When one uses an JTX atom for termination, the X-Hx separation should be fixed at the 

X-~HX separation used to create the Tlx atom. Thus, when ~HSi and Hc created in single 

component model systems are used to terminate SiC, the Si-HSi separation is fixed at 

2.351, and the C-~HC separation is fixed at 1.541. (If a two component model system 

were used, the Si-iTs; and C-Hc separations would be fixed at 1.891, the SiC lattice 

separation.) 
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Mulliken Charg es 
HWECP HW ECP(d) 

Atoms Type H( H321S H He H321S H 

1-3 Si 1.502 1.370 1.566 1.242 0.996 1.102 

4-6 C -1.518 -1.510 -1.604 -1.112 -1.074 -1.174 

7-9 C -1.196 -1.188 -1.312 -0.942 -0.901 -1.017 

10-12 Si 1.340 1.341 1.587 0.997 0.907 1.028 

13-15 Si 0.805 0.806 1.258 0.802 0.533 0.854 

16-18 C -1.841 -1.840 -1.894 -1.271 -1.252 -1.313 

19-21 Si 2.229 2.082 2.014 1.688 1.535 1.428 

22-24 C -1.531 -1.555 -1.655 -1.122 -1.119 -1.215 

25-26 c -1.101 -1.173 -1.352 -0.851 -0.879 -1.058 

28-30 Si 1.438 1.360 1.565 1.131 0.956 1.046 

31-33 Si 0.850 0.858 1.236 0.797 0.596 0.855 

34-36 C -1.486 -1.479 -1.583 -1.072 -1.037 -1.159 

Table 4.24 Mulliken Charges in the Si18Ci8#42 molecule, HW ECP and HW ECP(d) basis sets. 
The columns labeled overlineH( indicate use of overlineHsi and overlineHc using 
the hydrogen STO-3G basis set with different values of C- The columns labeled 
overlineH32i indicate use of overlineHs that use the valence shell s function, 3-21G 
split, from the HW ECP basis set. 

The results of these attempts are listed in Table 4.24 for the HW ECP and HW 

ECP(d) basis sets. If Sii8C18 were terminated "properly", all the C atoms would have the 

same Mulliken charge, and all the Si atoms would have the same Mulliken charge (though 

the Si and C Mulliken charges would be different). As in seen in Table 4.24, this result was 

not obtained using the llsi and Hc atoms created using pure Si and C model systems. 

This result suggests that the composition of the model system used to create Hs should 

be the same as the system one desires to terminate. 

4.8    Recommendations 

]ffs are highly dependent on basis set, geometry, and the model system in which they 

are created. For specific systems of interest in single component materials, for some basis 

sets, one may be able to use Mulliken charge to create Hs to mimic some aspects of bulk- 

like behavior. H atoms derived from Mulliken charges do not have much generic utility. 

The use of IT atoms was introduced to because of the limits on the size of molecules 
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that can be modeled with ab initio techniques. With the spread of large scale parallel 

computers, and advances in algorithm development [59, 60], it is likely that calculations 

on molecules large enough to give an acceptable representation of bulk materials will soon 

be possible. Development of better Effective Core Potential (ECP) basis sets would also 

enable calculations on larger molecules. 
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V.   Silicon Carbide and Silicon Surface Chemistry Studies 

5.1 Introduction 

In stark contrast to the wealth of theoretical (and experimental) studies of silicon 

and diamond surfaces, surprisingly few theoretical models of the SiC surface have been 

published. The bulk of the published models have focused on the SiC(OOl) surface because 

of its similarity to the (001) surface of silicon and diamond. However, the SiC(lll) surface 

is actually of higher interest for device fabrication. This chapter presents the first appli- 

cation of MIMOMM for modeling the reconstruction, hydrogenation, and oxidation of Si 

and C-terminated SiC(lll) surfaces. Literature models of the reconstruction of SiC(OOl) 

surface will first be described to show of the status of the understanding of this surface. 

The crystal structure of SiC(lll) and the origin of the variety of different types of SiC 

is then discussed, as well as the rationale for the specific SiC model system used in this 

study. The design of the Si and C terminated hybrid SiC clusters is then discussed in some 

detail to highlight the factors one must consider in designing a hybrid cluster to use with 

MIMOMM. Results of MIMOMM models of reconstruction, hydrogenation, oxidation, and 

surface vacancies are described and compared with conventional ab initio models. Lastly, 

the underlying reasons for the observed differences between oxidation of Si and C termi- 

nated SiC(lll) surfaces are discussed. 

5.2 SiC (111) Structure: Polytypes 

SiC is the most prominent of a family of close-packed materials that display a one- 

dimensional polymorphism called polytypism. SiC polytypes are distinguished by the 

stacking sequence of the tetrahedrally bonded SiC bilayers. The bond lengths and the 

local atomic environments of the different polytypes are nearly identical. However, the 

bulk electronic characteristics, e.g. electron mobility, vary by factors of 3 among the 

various polytypes [119]. 

A shorthand has been developed to catalog the different polytypes based on the fact 

that each SiC bilayer can occupy one of three positions with respect to the lattice, called 

A,B, and C. Depending on the stacking order, the bonding between Si and C atoms in 
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adjacent bilayers can either be zinc-blende (cubic) or wurtzite (hexagonal). The different 

bonding arrangements are shown in Figures 5.1 and 5.2. The purely cubic zinc-blende 

structure results from a stacking sequence of ABCABC (Figure 5.3), and is called 3C 

SiC. The purely hexagonal wurtzite form results from a stacking sequence of ABABAB 

(Figure 5.4) and is called 2H SiC. (In this notation, bulk silicon and diamond both have 

3C stacking sequences.) All other SiC polytypes have mixtures of hexagonal and cubic 

bonded sites [119]. 

Figure 5.1 Wurtzite (hexagonal) bond- 
ing between Si and C atoms 
in adjacent bilayers. 

Figure 5.2 Zinc-blende (cubic) bonding 
between Si and C atoms in 
adjacent bilayers. 

Among the SiC polytypes, 6H (stacking periodicity of 6 bilayers) is most easily 

prepared and best studied. The 3C and 4H polytypes have attracted more attention 

because of their superior electronic properties. The 4H polytype shown in Figure 5.5 is 

currently of highest interest to the Air Force for device applications [1]. 

5.3   Previous research on SiC Surfaces 

Sabisch et al. [118] have reported the most extensive results on the reconstruction of 

the SiC (001) surface. They used a slab periodic model of the surface with Density Func- 

tional Theory (DFT) calculations to investigate the reconstruction of both the Si and C- 

terminated SiC(OOl) surfaces. Figure 5.6 shows the structure of the Si-terminated SiC(OOl) 

surface. (The structure of the SiC(OOl) surface is essentially the same as the Si(001) sur- 

face, except the atom separations are 20% smaller because of the Si-C bondlength is 1.89A 
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SiC 
Bilayer 

Cleavage 
Plane 

C3 
Cleavage 

Plane 

(111) 

B 

B 

A BCABCAB CABCABC 
Figure 5.3 Crystal structure of the purely cubic SiC 3C polytype. The (111) crystal axis 

is aligned with the z axis. On a surface created by cleaving the crystal in the 
Ci plane, each surface atom has 1 dangling bond. For the C3 cleavage plane, 
each surface atom has 3 dangling bonds. 
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B 

B 

A BCA BCAB CABCAB C 
Figure 5.4    Crystal structure of the purely hexagonal SiC 2H polytype. 
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ABCABCABCABC 

Figure 5.5    Crystal structure of SiC 4H polytype. 

compared to 2.35Ä for bulk silicon, and the atom layers along the vertical axis alternate 

between silicon and carbon.) Sabisch et al. describe the reconstruction of the SiC(OOl) in 

terms of the distances di? d2, d3, and d4 that are labeled in Figure 5.6c. Table 5.1 (based 

on a similar table from Reference [118]) gives a comparison of various reported results for 

the reconstruction of the Si-terminated SiC(lll) surface. In contrast to the Si(OOl) sur- 

face, Sabisch et al. found that the Si-terminated SiC (001) surface does not dimerize, even 

though the lattice separation of the Si surface atoms in SiC is 3.08 Ä, nearly 0.8 A closer 

than in bulk silicon [80]. Sabisch et al. attribute this result to the fact that SiC is stiffer 

than Si, so the forces driving the Si dimer bond formation are insufficient to displace the 

subsurface atoms enough to allow the bond to form. This result predicting no dimerization 
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agrees with a similar DFT result listed in Table 5.1, but disagrees with other theoretical 

and experimental results. 

® m # m ® 

x      a) Unreconstructed c) Reconstructed 

Figure 5.6 

b) Unreconstructed d) Buckled Dimer 

SiC(OOl) Si-terminated surface reconstruction. A top view of the unreconstructed 
surface is shown in a). Surface Si atoms and the first two subsurface layers are 
shown. At lattice positions, the top layer Si atoms are 3.08A apart. A side of the 
unreconstructed surface is shown in b). The atoms shown are not all in the same 
plane. Sabisch's DFT result for the reconstructed surface is shown in c). Sabisch's 
result for di, 2.74A, is too large to say that dimerization has occurred. An alternate 
reconstruction observed in experiment, a buckled dimer, is shown in d). 

Parameter Ref. [118] Ref. [120] Ref. [121] Ref. [89] Ref. [122] Ref. [123] 
dx(A) 2.73 2.75 2.26 2.33 2.16 2.31 
d2(A) 0.00 0.00 0.05 0.20 0.20 

d3(A) 1.89 1.78 

d4(A) 1.89 1.78 
Method DFT DFT DFT MM SE Exp. LEED 

Table 5.1 Structural parameters for Si-terminated SiC(001)-(2Xl) surface. Parameters are de- 
fined in Figure 5.6. The values from [121] are from a (2X2) unit cell. LEED is a Low 
Energy Electron Diffraction measurement 
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Mehandru et al's semiempirical result of 2.16 Ä for the Si dimer length looks like a 

Si-Si double bond length, which by analogy with the Si(OOl) surface is almost certainly 

not the minimum energy bond configuration for a dimer. The other results observing 

dimerization predict dimer lengths similar to those seen for silicon. Sabisch et al were able 

to match the results of reference [121] if they imposed additional symmetry constraints on 

their model. The experimental result of reference [123] is consistent with the presence of 

buckled dimers on the surface (see Figure 5.6). 

The overall conclusion one can draw from Table 5.1 is that the reconstruction of the 

Si-terminated SiC(OOl) surface is not yet well understood, and needs additional investi- 

gation. Considering the dimerization of the Si(OOl) surface, and the spatial extent of a 

silicon dangling bond, DFT predictions of an undimerized Si-terminated SiC(OOl) surface 

are very curious. On the experimental Si(OOl) surface, the buckled dimer is the most 

likely reconstruction, though thermal vibrations of a buckled average out to a symmetric 

configuration. 

There is better agreement in the literature on the reconstruction of the C-terminated 

SiC(OOl) surface. Sabisch et al report that the C-terminated (001) surface readily under- 

goes dimerization in a number of configurations, as the forces driving the formation of the 

C-C dimer on the surface are large enough to distort the subsurface atoms. The (2X1) 

dimer row configuration was found to be the minimum energy structure. 

Kackell et al [124] investigated the vacancy induced reconstruction of the Si-terminated 

SiC(lll) surface. They performed a DFT calculation using a slab periodic SiC model. 

They report small displacements from lattice positions for the normal Si-terminated SiC(lll) 

surface, with dangling bonds on the surface Si atoms pointing roughly perpendicular to the 

(111) plane. The reconstruction caused by removing a Si atom is characterized by small 

lateral displacements, around 0.1 A, and larger vertical displacements, around 0.5 A of the 

Si atoms adjacent to the vacancy. 
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5.4    Designing an SiC(lll) Surface Model 

In order to run an MIMOMM optimization, one first needs to design embedded and 

bulk clusters for the ab initio and MM regions of the calculation. It is unlikely that one 

can define a procedure for designing the embedded and bulk clusters that will work for 

every possible situation. However, the considerations used for designing embedded and 

bulk clusters for the SiC(lll) surface model used in this study can be generalized for other 

applications of MIMOMM, and so a description of the design process is presented here. 

5.4.I SiC(lll) Embedded Cluster Design Considerations. The major fraction of 

the computational cost in MIMOMM is the ab initio calculations on the embedded cluster 

(EC), thus the overall goal in designing the EC is to make the smallest possible molecule 

that satisfies the model requirements. The factors used in the EC design are: 

• Need (111) orientation for the surface 

• Need more than one active site on the surface so that ontop and bridge bonding of 
adsorbates can be modeled 

• Need to keep active sites from being directly bonded to a terminating H atom, as 
this would provide an unacceptable representation of the chemical environment 

• Need to use at least the 6-31G* basis set in the ab initio calculations, which limits 
the embedded cluster to 15 to 30 heavy atoms to keep the number of basis functions 
manageable 

• Desire similar Si and C-terminated clusters for clear comparisons 

• Desire 4H structure 

The embedded cluster for a silicon terminated SiC(lll) surface that resulted from 

these design considerations, Si9Ci3H25, is shown in Figure 5.7. While reproducing the 4H 

structure was desired, an initial attempt made it clear that a 4 bilayer EC included too 

many heavy atoms and was computationally intractable. Instead, a two bilayer EC with 

zinc-blende bonding was used. The most natural way to produce a surface with more 

than one active site was to take advantage of SiC(lll)'s C3V symmetry and include 3 

active sites, undercoordinated Si atoms, on the surface. The Si atoms at the surface are 

connected to C atoms in the lower layer of the top bilayer, forming a non-planar ring. One 

C atom outside this ring was added so that the surface Si atoms are not directly bonded 

to a terminating H atom.  All the C (Si) atoms in the lower layer of the top bilayer are 
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bonded to Si atoms in the top layer of the bottom bilayer, and C (Si) atoms in the lower 

layer of the bottom bilayer were added to complete the zinc-blende structure. Using the 

6-31G* basis set, this Si-terminated EC contains 416 basis functions, which can be readily 

handled on available parallel computers. 

Notice that the considerations of the system of interest here resulted in a closed cage 

structure. One would predict that mechanical embedding may not have a major influence 

on a closed cage except in reactions involving large atom displacements. 

The EC for the C-terminated SiC(lll) surface, C9Si13H25, is shown in Figure 5.8. 

This EC was created by swapping the Si and C atoms in the Si terminated SiC(lll) EC. 

In addition to providing direct comparisons with the Si terminated EC, swapping atom 

types also means that both the Si and C-terminated ECs have consistent atom numbers. 

Thus, the same MM3 input file can be used in the hybrid GAMESS-MM3 optimization for 

both the Si and C-terminated calculations, resulting in a substantial setup time savings. 

The C-terminated EC contains 432 basis functions using the 6-31G* basis set, a few more 

than the Si-terminated EC because the C-terminated EC contains more Si than C atoms. 

5.4.2 Bulk Cluster Design Considerations. Since the computational cost of the 

MM calculations in MIMOMM are so small, the primary design consideration for the Bulk 

Cluster (BC) is to provide a "good" representation of the steric environment of the SiC 

lattice. However, the definition of "good" is difficult to quantify. One approach would be 

to design a number of BCs of increasing size, and use convergence of some property of the 

EC as a function of BC size to determine the optimum BC. This approach has two main 

drawbacks. First, this process could be very time consuming. Second, if the optimized EC 

structure is not very sensitive to the BC, e.g., a closed cage SiC cluster, it may be difficult 

to find a suitable property of the EC to use as a convergence criterion. In addition, because 

SiC has not been extensively investigated, little guidance on BC design could be obtained 

from the literature. 

Since an optimum BC for SiC could not be predetermined, two contrasting BCs were 

designed. One BC emphasized steric forces parallel to the (111) crystal axis (vertical), 

the other emphasized steric forces perpendicular to the (111) (horizontal) axis. Figure 5.9 
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Figure 5.7    Si9Ci3H25 (unreconstructed) EC used to model the Si-terminated SiC(lll) surface. 
Using the 6-31G* basis set, this EC contains 416 basis functions. 

Figure 5.8 C9Sii3H25 (unreconstructed) EC used to model the C-terminated SiC(lll) surface. 
Atoms 1,2, and 3 are the undercoordinated Si active sites. Atoms 1-22 belong to 
Region 1. H atoms 22-29 belong to Region 1 when this EC is used in a 2 layer hybrid 
cluster, but belong to Region 5 when this EC is used in a 4 layer hybrid cluster. H 
atoms 30-47 always belong to Region 5. Using the 6-31G* basis set, this EC contains 
432 basis functions. 
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shows a side view of a 4 bilayer BC designed to emphasize vertical steric forces. This 

BC contains 2 bilayers of MM atoms below the EC, in addition to a adding a thin "ring" 

of MM atoms around the EC. Four bilayers were included to reproduce the 4H stacking 

sequence. Figure 5.10 shows a view of the Si-terminated surface of this BC. This 4 bilayer 

BC contains 70 Si atoms, 70 C atoms, and 87 H atoms. MM3 defines 322 bonds, 831 angles, 

and 2088 torsion angles for this molecule. Starting with the atoms at lattice positions, an 

MM3 optimization of this cluster took 13.6 minutes on one node of an IBM SP2. 

Figure 5.11 shows a side view of a 2 bilayer BC, designed to emphasize horizontal 

steric forces. A surface view of this BC with the EC highlighted is shown in Figure 5.12. 

The number of atoms in this BC was kept approximately equal to the number of atoms 

in the 4 bilayer BC to keep the MM cost of the MIMOMM calculations constant for both 

BCs. This BC has 73 Si, 69 C, and 109 H atoms. MM3 defines 337 bonds, 843 angles, 

and 2025 torsion angles for this BC. Starting with the atoms at lattice positions, an MM3 

optimization of this BC took 19.5 minutes on one node of an IBM SP2. 

C-terminated BCs were created by swapping Si and C atoms in these Si-terminated 

BCs. The structures of these BCs are identical to those shown in Figures 5.9 to 5.12, and 

so are not shown. 

Before the SiC calculations discussed in this chapter were performed, it was unclear 

whether the differences between MIMOMM optimizations using the 2 and 4 bilayer BCs 

would be large enough to pick a clear winner. However, in analyzing the SiC oxidation 

results, it became obvious that the 4 bilayer BC was better when a reaction caused large 

atom displacements in the EC. After this conclusion was reached, the 2 bilayer BC was no 

longer used. The SiC calculations discussed in this chapter are not presented in chrono- 

logical order, so the use of the 2 and 4 bilayer BCs may seem inconsistent. 
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Figure 5.9 SiC 4 layer bulk cluster, Si-terminated (111) surface. The EC atoms in the middle 
of the cluster are shown as large white circles. The small white circles around the 
periphery of the cluster are H atoms. 

Figure 5.10     Si-terminated (111) surface of SiC 4 layer bulk cluster. The outermost EC atoms in 
the top bilayer are 2 bonds away from the edge of this cluster. 
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Figure 5.11    SiC 2 layer bulk cluster, Si-terminated (111) surface.   The EC atoms are 
shown as white circles. 

Figure 5.12    Si-terminated (111) surface of SiC 2 layer bulk cluster.  The outermost EC 
atoms in the top bilayer are 4 bonds away from the edge of this cluster. 
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5.5   SiC(lll) Surface Reconstruction 

5.5.1 Energetics. Reconstruction of the clean surface of a cluster must always be 

investigated before adsorption studies are performed because surface chemistry depends 

on the surface reconstruction. One expects the reconstruction of the SiC(lll) surface to 

be very different from the SiC(OOl) surface. On the unreconstructed SiC(OOl) surface, the 

undercoordinated surface atoms, Si or C, each have two nearest neighbor connections to 

the subsurface, and two dangling bonds oriented approximately 54.7° with respect to the 

surface. Dangling bonds on Si or C atoms in adjacent rows are pointed towards each other, 

a favorable orientation for dimer bond formation (though as we saw in Section 5.3 there 

are conflicting results in the literature on the dimerization of the Si-terminated SiC(OOl) 

surface). The atoms on the SiC(lll) surface (Ci cleavage plane) make three nearest 

neighbor connections to the subsurface, and have one dangling bond oriented normal to the 

surface, a less orientation for dimer bond formation. Both these factors make dimerization 

(or other reconstructions involving large atom displacements) unlikely on the SiC(lll) 

surface. 

Since the Si and C-terminated ECs used in this study have 3 dangling bonds on 

their surfaces, one can define the overall spin of the wavefunction as either 4 (quartet) 

or 2 (doublet). The quartet spin configuration should keep spins in the dangling bonds 

aligned, which will reduce the likelihood of dimerization. The doublet spin configuration 

will pair two of the dangling bond spins, which may favor dimer bond formation, though 

this bond formation would have to overcome the steric forces of the cluster. 

Table 5.2 lists the quartet and doublet state energies for the Si and C-terminated 

ECs. These calculations were performed using the Restricted Open shell Hartree Fock 

(ROHF) and Generalized Valance Bond (GVB) modules in GAMESS. We see that the 

energy difference between the ab initio and MIMOMM optimized results are quite small, 

0.6 ^j. These small energy differences are consistent with the small differences in ab initio mol 0i/ 

and MIMOMM optimized geometries, which are described in the following sections. 

The energy differences between the quartet and doublet results are more striking. 

For the Si-terminated EC, we see that the 2ROHF optimized geometry is 35.3 ^ higher 
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in energy than the 4ROHF result, and is accompanied by a large distortion in the cluster 

geometry. The 2ROHF MIMOMM (4 bilayer BC) optimized geometry shows much less 

distortion, but with a larger energy difference, 44.3 ±j$, higher than the 4ROHF MIMOMM 

(4 bilayer BC) result. Another doublet state that is relatively easy to define for this EC 

is a 2GVB-PP(1) with one open shell. The two Boys localized singly occupied 4ROHF 

orbitals centered on Si atoms 1 and 2 were used to form the GVB pair. The 2GVB-PP(1) 

energy for the cluster is only 1.1 ^ higher than the 4ROHF energy. From this result, one 

can conclude that the 4ROHF surface reconstruction is the lowest energy configuration for 

this cluster. 

Reconstruction 

Molecule Model 

6-31G* Energy (H) 

ab initio 
MIMOMM 

2 Bilayer 
MIMOMM 

4 Bilayer 

(S19C13H25) 

(Si9C13H25) 
(Si9C13H25) 

4ROHF 
2ROHF 

2GVB-PP(1) 

-3107.287434 
-3107.231180 
-3107.285713 

-3107.285539 -3107.286685 
-3107.216090 

(C9Si13H25) 
(C9Si13H25) 
(C9Sii3H25) 

4ROHF 
2ROHF 

2GVB-PP(1) 

-4111.394766 
-4111.297933 

DNC 

-4111.393840 -4111.393770 

Table 5.2 6-31G* energies of SiC clusters, doublet surface reconstruction. - indicates that a 
calculation was not performed. DNC indicates a calculation was attempted, but did 
not converge. 

The results for the 2ROHF C-terminated surface are similar. The 2ROHF energy for 

the C-terminated EC is 60.8 ^ higher than the 4ROHF result, almost twice the quartet- 

doublet energy difference for the Si-terminated EC. Several 2GVB-PP(1) calculations for 

the C-terminated EC were attempted, but none converged. The Boys localized orbitals 

on the surface carbon atoms do not form a good GVB pair, unlike the silicon case (a 

comparison of the Si and C orbitals is discussed in Section 5.12). Based on the results 

from the GVB-PP(l) optimization of the Si-terminated EC, the quartet-doublet energy 

difference for the C-terminated EC was judged sufficient to conclude that the 4ROHF 

reconstruction is energetically favored. 
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5.5.2 Quartet Surface Reconstruction: Structures. Figure 5.13 shows a com- 

parison of the bulk SiC(lll) lattice with the reconstructed (6-31G* optimized) Si and 

C-terminated ECs. The internal coordinates of the reconstructed Si and C-terminated 

ECs are listed in Table 5.3. Dimerization has not occurred, and overall the optimized 

structures are similar to the lattice geometry. There is one noticeable difference between 

the Si and C terminated ECs. In the Si-terminated EC, the surface Si atoms are 0.66 A 

above the C atoms in the top bilayer, close to the lattice value of 0.63 A. In the C- 

terminated EC, the surface C atoms have sunk down 0.18 A closer to the Si atoms in the 

top bilayer, a separation of only 0.45A. The overall multiplicity for both the Si and C- 

terminated calculations was set equal to 4, i.e., 3 unpaired electrons. In the Si-terminated 

case, the spin density population at each surface Si atoms is large, 0.43, indicating the 

existence of localized dangling bonds on the Si atoms. In the C-terminated EC, the spin 

density on all nuclei is small, at most 0.05, and is distributed throughout the molecule. 

This spin density distribution for the C-terminated EC indicates that describing the singly 

occupied MOs as localized dangling bonds isn't appropriate. Instead of forming dangling 

bonds like Si, the surface C subsurface Si bonding is strengthened, causing the C atoms to 

draw down closer to the subsurface. 

How much do the MIMOMM optimized 4ROHF structures differ from the conven- 

tional ab initio results? Table 5.4 lists a comparison of the optimized structure of the 

Si-terminated SiC(lll) EC, as well as the the MIMOMM optimized structure of the EC 

embedded within the 4 layer and 2 layer BCs described in Section 5.4.2. The effect of 

both BCs on the optimized geometry of Si-terminated the EC are small. The IMOMM 

optimized geometries for the C-terminated EC also show small differences from the non- 

IMOMM geometry. (The C-terminated EC showed similarly small differences.) The struc- 

tural differences between the 2-bilayer and 4-bilayer BC MIMOMM results are too small 

to conclude that one BC is better than the other. 

5.5.3 Doublet Surface Reconstruction: Structures. A comparison of the 2ROHF 

and 2GVB-PP(1) ab initio optimized geometries for the Si-terminated EC is shown in 

Figures 5.14 and 5.15.   Si atoms 1 and 2 have formed a bond in the 2ROHF case, each 
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Lattice 

\ 0.63 Ä 

1.89 

0.63 

Si Terminated 

0.66 

1.90 

0.60 

C Terminated 

!0.45 

1.94 

0.64 

Figure 5.13 Reconstruction of Si and C-terminated embedded cluster models of SiC(lll) 
surfaces. The Si-terminated cluster shows small deviations from the lattice 
geometry. The C-terminated cluster shows larger adjustments, with the sur- 
face C atoms moving approximately 0.2 Ä closer to the subsurface Si atoms. 
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Silicon Carbon Silicon Carbon 
Terminated Terminated Terminated Terminated 

Dist ß) 
3.147 3.151 

Angle(°) 
108.150 110.592 1 2 4 10 17 

2 3 3.147 3.151 5 11 18 108.150 110.592 
3 1 3.147 3.151 6 12 19 108.150 110.592 
1 9 3.641 3.661 7 1 8 107.174 114.316 
27 3.641 3.661 8 29 107.174 114.316 
3 8 3.641 3.661 9 37 107.174 114.316 
1 8 
1 7 
2 8 

1.903 
1.903 
1.903 

1.871 
1.871 
1.871 

4 10 16 97.944 101.348 
Torsion(°) 

-179.999 179.999 5 11 6 12 
29 1.903 1.871 5 11 4 10 -179.999 179.999 
37 1.903 1.871 4 10 6 12 -179.999 179.999 
39 1.903 1.871 18 22 17 20 179.999 179.999 

7 13 1.909 1.923 10 11 12 14 0.248 -0.311 
8 14 1.909 1.923 
9 15 1.909 1.923 

Table 5.3 Comparison of reconstruction of Si and C-terminated embedded clusters, conventional 
ab initio optimization, 6-31G* basis set. Atom numbers in this table refer to Figure 5.7. 
In an unreconstructed SiC lattice, bond lengths would be 1.89 A, bond angles (except 
for 4 10 16) would be 109.5°, and all the atoms in the torsion angles listed would be 
planar. 

Silicon Terminated SiC(lll ) EC 
Ab Initio IMOMM MIMOMM Ab Initio IMOMM MIMOMM 

2 Bilayer 4 Bilayer 2 Bilayer 4 Bilayer 

Dist (A) 
3.147 3.143 3.135 

Angle(°) 
108.150 107.982 108.816 1 2 4 10 17 

23 3.147 3.143 3.135 5 11 18 108.150 107.982 108.814 
3 1 3.147 3.143 3.135 6 12 19 108.150 107.979 108.820 
1 9 3.641 3.641 3.633 7 1 8 107.174 107.144 107.226 
27 3.641 3.641 3.633 8 2 9 107.174 107.144 107.235 
38 3.641 3.641 3.633 9 3 7 107.174 107.143 107.235 
1 8 
1 7 
28 

1.903 
1.903 
1.903 

1.904 
1.904 
1.904 

1.900 
1.900 
1.900 

4 10 16 97.944 98.803 98.372 
Torsion(°) 

-179.999 0.001 -0.002 5 11 6 12 
2 9 1.903 1.904 1.900 5 11 4 10 -179.999 180.000 179.997 
37 1.903 1.904 1.900 4 10 6 12 -179.999 179.999 180.000 
3 9 1.903 1.904 1.900 18 22 17 20 179.999 -179.942 180.000 

7 13 1.909 1.910 1.915 10 11 12 14 0.248 0.139 0.092 
8 14 1.909 1.910 1.915 
9 15 1.909 1.910 1.915 

Table 5.4 Comparison of ab initio (6-31G*) and MIMOMM optimized geometries of the silicon 
terminated SiC(lll) EC. Atom numbers in this table refer to Figure 5.7. No significant 
differences are observed among these three cases. 
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moving 0.35Ä along the X axis toward each other. These atoms drag their neighbors along 

with them, which also drag their neighbors with them, resulting in considerable distortion 

of the cluster. In contrast, the 2GVB-PP(1) optimized geometry differs little from the 
4ROHF optimized geometry. (MIMOMM optimizations were not performed with 2GVB- 

PP(1) calculations because it was known from the 4ROHF results that MIMOMM would 

make little difference in these cases.) This result indicates having the electrons in the 

dangling bonds unpaired is lower in energy than forcing them into bond pairs, which is 

what the 2ROHF configuration does. The 4ROHF spin configuration for these clusters 

would correspond to a (1 x 1) reconstruction, i.e., the unit cell for the surface is a single, 

unbonded atom. The modeled surface reconstruction is limited by the size of the cluster, 

thus we can only state that the (lxl) surface reconstruction is the minimum energy 

solution for the clusters considered in this work. 
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Figure 5.14 Ab initio 2ROHF (6-31G*) optimized Si-terminated SiC(lll) cluster. Si atoms 1 
and 2 have moved along the x axis to bond, causing considerable distortion in the 
cluster. The 2ROHF optimized geometry is 35.3 ^ higher in energy than the 
4ROHF optimized geometry. 

Figure 5.15 Ab initio 2GVB-PP(1) (6-31G*) optimized Si-terminated SiC(lll) cluster. The 
2GVB-PP(1) geometry shows small differences from the 4ROHF result. The 2GVB- 
PP(1) optimized geometry is only 1.1 |^ higher is energy than the 4ROHF result. 
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5.6   Hydrogenation of SiC(lll) Surface 

Hydrogenation is the simplest possible atom adsorption reaction, thus is a logical 

starting point for adsorption studies of the SiC(lll) surface. Since H atoms can only form 

one bond, they can only chemisorb to ontop sites on the SiC(lll) EC. One anticipates that 

ontop adsorption will only cause minor changes to the EC structure, so the MIMOMM 

results should show minor differences from conventional ab initio results. 

5.6.1 Si-terminated SiC(lll) Surface. Hydrogen adsorption was modeled by 

placing an H atom 1.5 A directly above a surface Si atom and allowing the geometry to 

optimize. The ab initio optimized geometries of the Si-terminated cluster with 0 (clean 

surface), 1, 2, and 3 H atoms adsorbed is shown in Figure 5.16. We see in this figure 

that H atom adsorption does not cause noticeable changes in the cluster geometry, which 

leads one to predict that the addition of bulk steric forces in a MIMOMM optimization 

will have little effect on the optimized geometry. This prediction is confirmed by a more 

detailed analysis. Figure 5.17 shows a comparison of the of the ab initio and MIMOMM 

(2 bilayer BC) optimized geometries of the Si-terminated cluster with 1 H atom adsorbed. 

We see that the differences in bond lengths between these cases are on the order of 10_3A 

Differences in bond and torsion angles are are at most 0.7°. Figures 5.18 and 5.19 show 

similar results for adsorption of 2 and 3 H atoms. We also see that the geometries of the 

clusters in all 3 cases are essentially identical, indicating that there is little interaction 

between the adsorbed H atoms. 

Since the ab initio and MIMOMM optimized geometries are so similar, the optimized 

energies should be nearly equal. Table 5.5 lists the Hartree-Fock 6-31G* energies of the 

Si terminated SiC(lll) EC with 0 (clean surface), 1, 2, and 3 (fully saturated) H atoms 

adsorbed. The addition of the steric forces from the 2 bilayer BC raises the calculated 

energy of the EC by approximately 0.002 H in all cases, a very small amount. Since the 

MIMOMM optimization amounts to adding constraints to the ab initio optimization, the 

MIMOMM optimized result should always be higher in energy than the ab initio optimize 

result. The MP2 energy calculated at the 6-31G* optimized geometry is also listed in 

Table 5.5. 
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Si-terminated SiC(111) cluster 

Bare cluster 

Cluster with 1 H atom 
adsorbed 

Cluster with 2 H atoms 
adsorbed 

Cluster with 3 H atoms 
adsorbed 

Figure 5.16    H atom adsorption onto the Si-terminated SiC(lll) cluster. 
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O Hads 

J46 Initio MIMOMM 
2 Bilayer 

Ab Initio MIMOMM 
2 Bilayer 

Dist (Ä) 
1.486 1.487 

Angle (°) 
91.224 90.559 1 Kads Had«   1 2 

1 2 3.146 3.142 Hads   1 3 91.221 90.570 
2 3 3.146 3.142 Ha(Js   1 8 110.315 110.139 
3 1 3.144 3.142 7 1 8 107.028 107.046 
1 9 3.642 3.642 8 2 9 107.150 107.127 
1 8 
1 7 

7 13 

1.897 
1.897 
1.908 

1.903 
1.903 
1.909 

9 3 7 107.150 107.126 
Torsion(°) 

-179.858 -179.892 5 11 4 10 
8 14 1.908 1.909 4 10 6 12 179.858 179.897 
9 15 1.908 1.909 10 11 12 14 0.311 0.174 

Figure 5.17 Comparison of ab initio and MIMOMM optimized Si-terminated SiC(lll) 
cluster geometry with 1 H atom adsorbed. 6-31G* basis set used in all 
calculations. 
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,46 Initio MIMOMM 
2 Bilayer 

Ab Initio MIMOMM 
2 Bilayer 

Dist (A) 
1.486 1.487 

Angle (°) 
91.054 90.548 1 Hadji Hadsl  1 2 

2 Hads2 1.486 1.487 Hadji 1 3 91.131 90.427 

1 2 3.143 3.138 Hadsl 1 8 110.204 110.136 

2 3 3.144 3.140 Hadj2 2 3 91.131 90.548 

3 1 3.144 3.140 Hads2 2 1 91.054 90.426 

1 9 3.636 3.637 Hads2 2 9 110.283 110.136 

1 8 1.898 1.901 7 1 8 107.032 107.063 

1 7 1.897 1.900 8 29 107.032 107.054 

7 13 
8 14 
9 15 

1.908 
1.907 
1.908 

1.900 
1.909 
1.909 

9 37 107.097 107.092 
Torsion(°) 

179.999 -179.990 5 11 4 10 
4 10 6 12 179.831 179.858 

10 11 12 14 0.315 0.171 

Figure 5.18 Comparison of ab initio and MIMOMM optimized Si-terminated SiC(lll) 
cluster geometry with 2 H atoms adsorbed. 6-31G* basis set used in all 
calculations. 
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Ab Initio MIMOMM 
2 Bilayer 

Ab Initio MIMOMM 
2 Bilayer 

Dist (Ä) 
1.487 1.486 

Angle (°) 
90.978 90.344 1 Hadsi Hadsl   1 2 

2 Hads2 1.487 1.486 Hadsl 1 3 90.978 90.343 
3 Ha(js3 1.487 1.486 Hadsi 1 8 110.174 110.188 

1 2 3.140 3.138 Ha<is2 2 3 90.978 90.343 
2 3 3.140 3.138 Hadj2 2 1 90.978 90.343 
3 1 3.140 3.138 Had32 2 9 110.172 110.188 
1 9 3.630 3.632 Hads3 3 1 90.978 90.342 
1 8 1.897 1.902 Ha<is3 3 2 90.978 90.343 
1 7 1.897 1.902 Hads3 3 7 110.174 110.188 

7 13 1.907 1.902 7 1 8 107.010 106.696 
8 14 1.907 1.902 8 2 9 107.010 106.696 
9 15 1.907 1.902 937 107.010 106.696 

Torsion(°) 
179.999 179.998 5 11 4 10 

4 10 6 12 -179.997 -179.996 
10 11 12 14 0.253 0.286 

Figure 5.19 Comparison of ab initio and MIMOMM optimized Si-terminated SiC(lll) 
cluster geometry with 3 H atoms adsorbed. 6-31G* basis set used in all 
calculations. 
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Table 5.6 lists the H atom adsorption energies energies of hydrogenation for the first, 

second, and third H atoms. The hydrogenation energy for each H atom is (essentially) 

the same, another indication that there is very little interaction between the adsorbed H 

atoms. MIMOMM optimization has no significant effect on the adsorption energies. The 

MP2 adsorption energies are approximately 6 ^ larger than the Hartree-Fock results, 

and about 7 ^ smaller than similar experimental results also shown in this table. These 

results show that neglect of electron correlation in the HF calculation does not lead to 

large errors for the adsorption energies. 

Molecule Model 

6-31G* Energy (H) 
Hartree-Fock MP2 

Ab Initio Ab Initio MIMOMM 
2 Bilayer 

(Si9C13H25) 
(Si9Ci3H25)H 
(Si9Ci3H25)H2 
(Si9Ci3H25)H3 

4ROHF 
3ROHF 
2ROHF 
iRHF 

-3107.287434 
-3107.907559 
-3108.527959 
-3109.146875 

-3107.285539 
-3107.905638 
-3108.526036 
-3109.146875 

-3109.704721 
-3110.335152 
-3110.965989 
-3111.596687 

Table 5.5 6-31G* energies of Si-terminated SiC(lll) clusters used in calculating energy of hy- 
drogenation. (The 6-31G* energy for H atom is -0.498233 H.) The column labeled ab 
initio lists the results of a conventional ab initio calculation for adsorbing 1, 2, and 
3 H atoms onto the EC. The column labeled MIMOMM lists the MIMOMM results 
using the 2 bilayer BC. 

A E (kcal/mole) 
Hartree-Fock MP2 

Ab Initio    MIMOMM    Ab Initio 
2 Bilayer 

(Si9Ci3H25)H2 + H —►    (Si9C13H25)H3 -76.5             -76.5 -82.9 

(Si9Ci3H25)H + H —>    (Si9Ci3H25)H2 -76.7             -76.7 -83.2 

(Si9Ci3H25) + H —►    (Si9C13H25)H -76.8             -76.9 -83.1 

SiH3 + H ->    SiH4 -76.3 -84.2 

SiH3 + H ->    SiH4 -90.3 (exp) 

HSi(CH3)3 + H ->    Si(CH3)3H -90.3 (exp) 

Table 5.6    HF-SCF and MP2 (6-31G*) energies of hydrogenation, Si-terminated SiC(lll) surface. 
Experimental values are taken from Ref [125]. 
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5.6.2 C-terminated SiC(lll) Surface. Hydrogen adsorption on the C-terminated 

SiC(lll) surface was modeled by placing an H atom 1.1 A directly above a surface C 

atom and allowing the geometry to optimize. The ab initio optimized geometries of the 

C-terminated cluster with 0 (clean surface), 1, 2, and 3 H atoms adsorbed is shown in 

Figure 5.20. We see that H atom adsorption on the C-terminated SiC(lll) surface causes 

a subtle, change in the cluster geometry localized around the C atom to which an H atom 

has adsorbed. Recalling the discussion in Section 5.5, we saw that upon reconstruction, 

the surface C atoms in the C-terminated SiC cluster displaced down from their lattice 

positions by approximately 0.15Ä, unlike the Si-terminated cluster in which the surface 

Si atoms remained nearly in lattice positions. The undercoordinated surface Si atoms 

form "dangling" bonds with and three Si-C single bonds. The undercoordinated surface C 

atoms form stronger C-Si bonds, with less electron density going into the dangling bond. 

Adsorption of an H atom onto the surface C atom creates 4 roughly equivalent single 

bonds. 

Table 5.7 lists the structural changes caused by adsorption of one H atom onto the 

C-terminated cluster. The increase in C-Si bond length caused by the H atom adsorption 

is rather small, about 0.02A, and the bond angles decrease by about 4.5°. The changes in 

the other internal coordinates in the cluster caused by the adsorption are very small and 

so are not listed. The differences between ab initio and MIMOMM optimized geometries 

are approximately the same size as was seen for the Si-terminated SiC cluster, and so are 

also not listed. 

Table 5.8 lists the 6-31G* energies of the C-terminated SiC(lll) EC with 0 (clean 

surface), 1, 2, and 3 (fully saturated surface) H atoms adsorbed. As was seen for the 

Si-terminated EC, the addition the steric forces from the 2 bilayer BC is seen to raise the 

energy by approximately 0.002 H in all cases, similar to the Si-terminated SiC cluster re- 

sults. Table 5.9 lists the energies of hydrogenation for the first, second, and third H atoms. 

As was seen for the hydrogenation of Si-terminated cluster, the ab initio and MIMOMM 

results are essentially identical. H atom adsorption on the C-terminated SiC(lll) cluster 

causes larger structural changes than for the Si-terminated cluster. However, the structural 

changes in the C-terminated cluster are highly localized, so the effect of bulk steric forces 
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C-terminated SiC(111) cluster 

Bare cluster 

Cluster with 1 H atom 
adsorbed 

Cluster with 2 H atoms 
adsorbed 

Cluster with 3 H atoms 
adsorbed 

Figure 5.20 H atom adsorption on the C-terminated SiC(lll) cluster. Structural changes caused 
by H atom adsorption are subtle, and localized, and can be best discerned by com- 
parison with the bare cluster. 
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Clean H Adsorbed 
Distance (Ä) 

1.876 
1.870 
1.870 

1.896 
1.893 
1.893 

1 4 
1 7 
1 8 

Angle (°) 
114.585 
114.315 
114.586 

110.650 
110.573 
110.651 

4 1 8 
8 1 7 
7 14 

AZ Surface BilayerA 
Cx-Sis 
C2-S18 

C3-Si8 

0.46 
0.46 
0.46 

0.59 
0.45 
0.45 

Table 5.7    Structural changes caused by H atom adsorption on the C-terminated SiC(lll) cluster. 

in the MIMOMM optimization are relatively unimportant. The energy of adsorption for 

each H atom is essentially identical, and the MP2 results for the cluster differ from the 

experimental hydrogenation energy of the CH3 radical by 5 ^-, is typical for the accuracy 

of MP2. 
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Molecule Model 

6-31G* Energy (H) 
Hartree-Fock MP2 

Ab Initio Ab Initio MIMOMM 
2 Bilayer 

(C9Sii3H25) 
(C9Si13H25)H 
(C9Sii3H25)H2 
(C9Si13H25)H3 

4ROHF 
3R0HF 
2ROHF 

JRHF 

-4111.394766 
-4112.027434 
-4112.659983 
-4113.292397 

-4111.393840 
-4112.026682 
-4112.659353 
-4113.291888 

-4113.591320 
-4114.249315 
-4114.907348 
-4115.565393 

Table 5.8 6-31G* energies of SiC molecules used in calculating energy of hydrogenation. (The 6- 
31G* energy for H atom is -0.498233 H.) The column labeled ab initio lists the results 
of a conventional ab initio calculation for adsorbing 1, 2, and 3 H atoms onto the EC. 
The column labeled MIMOMM lists the MIMOMM results using the 2 bilayer BC. 

A E (kcal/mol <0 
Hartree-Fock MP2 

Ab Initio    MIMOMM Ab Initio 
2 Bilayer 

(C9Si13H25)H2 + H -► (C9Si13H25)H3 -84.3 -84.5 -100.2 

(C9Si13H25)H + H -» (C9Si13H25)H2 -84.3 -84.4 -100.3 

(C9Si13H25) + H -» (C9Si13H25)H -84.2 -84.3 -100.3 

CH3 + H -► CH4 -89.2 -104.2 

CH3 + H -> CH4 -104.8 (Exp) 

Table 5.9    Comparison of energies of hydrogenation, C-terminated SiC(lll) surface. Experimen- 
tal result is taken from Ref [125]. 
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5.7    Oxidation of SiC 

5.7.1 Background. Depositing insulating layers on semiconductors is an impor- 

tant step in device fabrication. A commonly used method for creating insulating layers on 

silicon is to expose the surface to an oxygen plasma. Depending on the discharge conditions 

(power input, gas pressure), O atoms can be the majority neutral species in the plasma. 

The O atoms react with the silicon surface to form a silicon-oxide insulating layer. This ap- 

proach has also been used to grow insulating layers on SiC. However, significantly degraded 

device performance is observed for oxide layers grown on carbon terminated SiC(lll) sur- 

faces compared to silicon terminated surfaces [126]. As was discussed in Chapter I, SiC 

MOSFET device performance is critically sensitive to defect formation at the insulating 

layer interface. Based on the observation that 0 atoms etch diamond surfaces, it is hy- 

pothesized that O atoms etch carbon from the C-terminated surface. After the C atoms 

have been etched away, the O atoms then react with the subsurface Si atoms to form a 

silicon oxide layer. However, the presence of C atom vacancies in this layer is believed to 

increase resistivity underneath the interface, causing the degraded device performance. 

The mechanisms responsible for the observed differences for insulating layers grown 

on Si and C-terminated SiC surfaces are not understood [126]. Little characterization of 

oxide layers on SiC surfaces has been performed, and no theoretical treatments of the 

oxidation of SiC(lll) surfaces have been published. Etching and other O atom reactions 

with SiC surfaces are likely to cause large atom displacements, so ab initio calculations on 

a small SiC cluster will likely yield unrealistic results. MIMOMM is a good way to include 

bulk steric effects at an acceptable computational cost. 

5.7.2 Methodology for Simulating Oxidation. Mapping out the PES for O atom 

reactions with SiC requires the ability to freeze specific internal coordinates, which is not 

possible with the present implementation of delocalized coordinates in GAMESS. As an 

alternative, O atoms were placed in a number of starting positions relative to the SiC ECs, 

and the geometry of the system allowed to optimize. Figure 5.21 shows a view of the top 

bilayer with four starting positions labeled. 
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Position Site 
I Si-0 (C-O) 

ontop 
II Si-O-Si (C-O-C) 

bridge 
III Si-O-C (C-O-Si) 

ring insertion 
IV No adsorption 

calculated 

Distance from Atom 1 
Ax       Ay      Az 

I 0.0 0.0 1.5 

II 1.57 0.0 1.5 

III 0.79 -0.79 -0.32 

IV 1.57 1.57 1.0 

Figure 5.21     Starting points for O atom reactions with SiC EC. Atom numbers are the same as 
previous figures. Only the first bilayer is shown for clarity. 
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The starting positions were chosen to favor formation of specific adsorption sites. 

Position I, with the total spin set to 4 (quartet), favors adsorption on top of atom 1. 

Position II, with the total spin set to 2 (doublet), favors formation of a bridge site, Si-O-Si 

or C-O-C. Position III, with the total spin set to 4, favors insertion of the 0 atom into the 

Si-C surface bilayer ring. One of the mechanisms proposed for the oxidation of of Si(lll) 

is the adsorption of a molecular oxygen precursor. After this precursor dissociates, the 

lowest energy configuration is for one O atom to move to an ontop site, while the other 

0 atom inserts itself into the surface bilayer, forming an Si-O-Si ring [127]. Position III 

tests a similar mechanism for O atoms, creating Si-O-C (Si-terminated surface) and C-O-Si 

(C-terminated) rings. Position IV is above the center of the EC, and it was unclear what 

type of adsorption site would result from starting at this location. Position IV is 2.68A 

away from all the surface atoms, a distance that is much larger than a typical Si-0 bond 

length of 1.68Ä or a C-0 bond length of 1.381. Several AMI 2ROHF optimizations, using 

a number of different convergence options, failed to converge in the initial SCF procedure 

with an O atom at Position IV. Formation of a stable subsurface adsorption site is likely it 

the O atom is placed directly below Position IV. However, because the subsurface atoms are 

directly bonded to H atoms, subsurface adsorption below Position IV was not investigated. 

5.8    Oxidation of the Si-terminated SiC(lll) Surface 

5.8.1 O-Si Ontop Site Adsorption: Structure. O atom adsorption at an ontop 

site was modeled by initially placing an O atom 1.5 A directly above Si atom 1 of the 

EC. The overall multiplicity of the molecule was set to 4, to insure the O atom could only 

bond to one Si atom on the surface. For the conventional ab initio optimization of the 

EC, the system was first optimized at the semi-empirical level using AMI to enable the 

calculation of a numerical Hessian to initiate the 6-31G* optimization. The AMI Hessian 

was also used to initiate the MIMOMM optimizations; however, use of the AMI Hessian 

in IMOMM did not provide the same reduction in number of optimization steps observed 

in conventional ab initio calculations. A possible reason for this result is that the initial 

Hessian is updated using the gradient at each optimization step. Since MIMOMM uses the 
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sum of ab initio and MM gradients, the hybrid gradient may be unsuitable for updating 

the Hessian calculated for the EC alone. 

The MIMOMM (2 bilayer BC) optimized Si-terminated EC with an O atom adsorbed 

at an ontop site (directly above an Si atom) is shown in Figure 5.22. The small distortions 

in the EC geometry caused by the onto O atom adsorption are similar to the H atom 

adsorption results. A comparison of the geometry of the clean Si terminated cluster, the 

ab initio optimized cluster with 1 O atom adsorbed, and the MIMOMM result for 1 O 

atom adsorbed is listed in Figure 5.22. The optimized geometries of the EC for these three 

cases differ very slightly. 

The adsorption calculations in this research only provide final state energies for the 

adsorption sites, and cannot predict any barriers in the overall reaction pathway. However, 

the fact that O atom ontop site adsorption causes so little distortion in the cluster geometry 

is good evidence that there is no barrier to this reaction. 

5.8.2 Si-O-Si Bridge Site Adsorption. O atom adsorption at a bridge site on the 

Si-terminated surface was modeled by placing an O atom 1.5 A above the plane of the 

surface Si atoms, and halfway between Si atoms 1 and 2. The overall multiplicity of the 

EC was set to 2 to force the O atom to form two bonds with the surface Si atoms. 

Adsorption of an O atom at a bridge site induces significant distortion of the EC. 

Figure 5.23 shows a view in the XZ plane of the ab initio optimized geometry of the Si- 

terminated EC. This view emphasizes the planes of Si and C atoms. Figure 5.24 shows the 

ab initio optimized structure of the Si-terminated EC with 1 O atom adsorbed at a bridge 

site. The displacement of Si atoms 1 and 2 to bond with the O atom is the root cause for 

the observed distortion of the EC. From their initial separation of 3.14 A, atoms 1 and 2 

have each moved 0.34 A closer together along the X axis, dragging atoms 4 and 5 along 

with them. Atoms 4 and 5 drag 10 and 11 along for the ride. Bond angle 1-8-2 squeezes 

down from 1110 to 83°, and Atom 8 is driven 0.5 A down from its initial position. Atom 8 

drives atom 14 down 0.4A. Atoms 16 through 21 are displaced approximately ±0.2A along 

the Z-axis in response to the displacement of the other atoms. (Atom displacements and 

geometry for the ab initio and MIMOMM optimizations for O atom bridge site adsorption 
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^Adsorbed 

SigCi3H25 
Ab Initio 

Si9C 3H25O SigCi3H25 
Ab Initio 

Si9C 3H25O 

Ab Initio MIMOMM Ab Initio MIMOMM 

2 Bilayer 2 Bilayer 

Dist (A) 
1.698 1.698 

Angle (°) 
„ 94.560 93.785 1 Oads Oads 1 2 

1 2 3.147 3.155 3.149 Oads  1 3 - 94.524 93.803 

23 3.147 3.140 3.138 Oads   1 8 - 111.663 111.422 

3 1 3.147 3.155 3.149 7 1 8 107.174 107.450 107.566 

1 9 3.641 3.647 3.643 8 2 9 107.174 106.928 106.914 

1 8 
1 7 

7 13 

1.903 
1.903 
1.903 

1.882 
1.882 
1.912 

1.885 
1.885 
1.914 

9 37 107.174 106.928 106.917 

Torsion(°) 
-179.999 -179.865 -179.922 5 11 4 10 

8 14 1.903 1.912 1.914 4 10 6 12 -179.999 -179.854 179.930 

9 15 1.903 1.908 1.909 10 11 12 14 0.248 0.302 0.151 

Figure 5.22 Comparison of ab initio and MIMOMM optimized (6-31G*) Si-terminated 
SiC(lll) cluster geometry with 1 O atom adsorbed onto an ontop site. The 
ab initio optimized bare Si-terminated EC result is listed to show the small 
structural change induced by O atom adsorption at an ontop site. 
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are listed in Tables 5.10 and 5.11 ). While we saw in Chapter III that dimerization on 

the Si(OOl) surface induced large subsurface atom displacements, on the order of tenths of 

angstroms, hulk material doesn't "curl up " around the edges, as this finite SiC(lll) cluster 

appears to have done in response to a Si-O-Si bridge site being formed on the surface. 

Figure 5.25 shows the MIMOMM optimized geometry for the Si-terminated EC using 

the 2 bilayer BC. Significant distortion in the EC remains, and the overall pattern of the 

distortion is the same as in the ab initio optimized case. However, Table 5.10 shows that 

the atom displacements have been reduced. (A comparison of the optimized geometries is 

listed in Table 5.11.) 

Figure 5.26 shows the MIMOMM optimized result using the 4 bilayer BC. The dif- 

ferences between this result, the ab initio optimized result as well as MIMOMM using the 

2 bilayer BC are dramatic! Unlike the 2 bilayer BC, the 4 bilayer BC adds steric forces 

on the bottom layer EC atoms, atoms 16-22, along the z axis. Thus, when atom 10 is 

pulled up by atom 4 (which in turn is pulled by atom 1), atoms 17 and 20 now have a force 

from the BC restricting their motion along the z axis. Atoms 17 and 20 now pull back on 

atom 10, constraining its motion. (Atom displacements on the other side of the EC are 

likewise reduced.) Displacement of the bottom bilayer atoms still occurs, (Table 5.10), but 

is reduced by a factor of 3 to 4 from compared with the ab initio result. Experimental 

results for SiC are not available for direct comparisons with these, but the atom displace- 

ments observed for the MIMOMM 4 bilayer BC case are closer to MM models of subsurface 

displacements induced by surface reconstruction on silicon surfaces [88]. 

The differences between the MIMOMM optimized results using the 2-bilayer and 

4-bilayer bulk clusters emphasize that thinking of a surface as a 2-D plane of atoms is 

a poor physical model. Cleaving a real crystal not only creates a surface, it also creates 

a "displacement zone" underneath the surface. This displacement layer responds to dis- 

placements of the surface atoms, as well as constraining the motions of the surface atoms. 

The 2-bilayer bulk cluster does not contain enough of this displacement zone to provide 

realistic constraints on the embedded cluster. The 4-bilayer bulk cluster contains enough 

of the displacement zone to provide more realistic constraints on the embedded cluster, 

which significantly reduces displacements along the z-axis by the atoms at the bottom of 
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the embedded cluster. In order to determine how much of the displacement zone is needed 

to provide an "acceptable" representation of the surface of a bulk material, one would need 

to use bulk clusters of increasing thickness in MIMOMM optimizations. Convergence of 

the embedded cluster atom displacements would be the criterion used to decide when the 

the bulk cluster is thick enough. 

Atom Displacements (Ä) Caused by 
Si-O-Si Bridge Site Adsorption 

Atom Ab Initio MIMOMM: 2 Bilayer MIMOMM: 4 Bilayer 
6x *y <5z 6x 6y (Sz 6x *y Sz 

1 0.342 0.001 -0.098 0.311 -0.003 -0.058 0.299 0.005 -0.047 
2 -0.342 0.001 -0.098 -0.304 -0.003 -0.059 -0.290 -0.004 -0.043 
3 0.000 -0.095 -0.027 0.003 -0.056 0.013 0.009 -0.055 0.024 
4 0.278 0.037 0.286 0.183 -0.015 0.232 0.171 -0.007 0.187 
5 -0.278 0.037 0.286 -0.179 -0.012 0.225 -0.165 -0.019 0.174 
6 0.000 -0.069 -0.101 0.003 -0.039 -0.015 0.011 -0.045 0.005 
7 0.066 -0.000 -0.022 0.062 0.002 -0.009 0.063 0.005 0.003 
8 0.000 0.040 -0.505 0.002 0.080 -0.393 0.006 0.102 -0.323 
9 -0.066 -0.000 -0.022 -0.057 0.003 -0.012 -0.049 0.003 0.001 

10 0.083 0.024 0.234 0.069 0.000 0.164 0.028 0.026 0.067 
11 -0.083 0.024 0.234 -0.069 0.002 0.157 -0.065 -0.003 0.090 
12 0.000 -0.003 -0.096 0.001 0.017 -0.012 0.005 -0.018 0.012 
13 0.008 -0.006 -0.023 0.026 0.011 -0.010 0.027 0.004 0.007 
14 0.000 -0.033 -0.412 0.000 0.017 -0.302 0.000 0.038 -0.204 
15 -0.008 -0.006 -0.024 -0.027 0.012 -0.014 -0.022 -0.000 0.000 
16 0.000 -0.082 -0.188 0.001 -0.027 -0.145 0.001 -0.003 -0.064 
17 -0.083 -0.040 -0.198 -0.058 0.049 -0.091 -0.018 0.048 -0.077 
18 0.039 0.035 0.192 0.019 0.016 0.120 -0.022 0.011 0.040 
19 -0.026 0.000 -0.040 -0.030 -0.003 0.027 0.009 -0.003 0.022 
20 -0.039 0.035 0.192 -0.020 0.014 0.127 0.018 0.006 0.045 
21 0.083 -0.040 -0.198 0.056 0.050 -0.095 0.026 0.033 -0.075 
22 0.026 0.000 -0.040 0.030 -0.002 0.024 -0.002 -0.004 0.014 

Table 5.10 Atom displacements induced by O atom adsorption onto a bridging site of an 
Si-terminated SiC(lll) surface. Displacements are measured from the 6-31G* 
optimized geometry of the Si9Ci3H25 cluster. Displacements along the z axis 
for atoms on the bottom of EC, Atoms 16-22, using MIMOMM with the 4 
bilayer BC are reduced by a factor of 3-4 from the ab initio result. 
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Figure 5.23 Clean Si-terminated SiC(lll) embedded cluster, xz view, ab initio (6-31G*) opti- 
mized geometry. Notice that all the Si and C atoms lie in planes perpendicular to 
the z axis. This is a different view of the same EC shown in Figure 5.7. The bridge 
site for O atom adsorption is between Si atoms 1 and 2. 

^Adsorbed 

Figure 5.24 Ab initio optimized Si-terminated SiC(lll) EC with O atom adsorbed in a bridge 
site. Directions of atom displacements from reconstructed EC positions are shown 
by arrows. 
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I  ^Adsorbed 

Figure 5.25 MIMOMM optimized Si-terminated SiC(lll) EC with O atom adsorbed in a bridge 
site, 2 bilayer bulk cluster. Atom displacements are noticeably smaller than the ab 
initio result 

^Adsorbed 

Figure 5.26 MIMOMM optimized Si-terminated SiC(lll) EC with O atom adsorbed in a bridge 
site, 4 bilayer bulk cluster. Atoms 1 and 2 have each moved 0.3 A away from their 
original positions, as in the other cases. The steric forces from the 4 bilayer on 
atoms 16-22, not present in the other cases, reduce their displacements and the 
overall distortion in the EC. 
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S19C13H25 SI9C13H25O SigCi3H250 SigCi3H250 
Ab Initio Ab Initio MIMOMM MIMOMM 

None None 2 Bilayer 4 Bilayer 

Dist (A) 
1.727 1.754 1.767 1 Oads 

2 Oads - 1.727 1.754 1.765 
1 2 3.147 2.463 2.531 2.546 
1 4 1.904 1.878 1.928 1.942 
1 8 1.903 1.848 1.852 1.842 

4 10 1.896 1.960 1.968 2.037 
5 11 1.896 1.960 1.968 1.998 
7 13 1.903 1.913 1.911 1.911 
8 14 1.903 1.816 1.817 1.795 

Angle (°) 
90.868 92.304 92.238 1 Oads  2 

Oads 1 4 - 136.191 141.362 142.883 
1 8 2 111.593 83.592 86.166 87.404 
4 1 8 110.098 104.301 105.030 104.867 
8 2 9 107.174 112.077 113.011 114.139 
9 3 7 107.174 101.085 102.006 102.184 

Torsion(°) 
0.248 -13.480 -9.568 6.075 10 11 12 14 

20 18 17 16 -1.492 -12.720 -8.356 -2.836 

Table 5.11 Comparison of ab initio and MIMOMM optimized Si-terminated SiC(lll) cluster 
geometry with 1 O atom adsorbed onto an bridge site. The bare cluster results are 
listed for comparison. 6-31G* basis set used in all calculations. 
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5.8.3 Si-O-C Ring Insertion: Structure. Initially placing an 0 atom halfway 

between a surface Si atom and a subsurface C atom, starting position III in Figure 5.21, 

resulted in breaking of the Si-C bond and formation of Si-0 and O-C bonds. I.e., the O 

atom inserted itself into the Si-C surface bilayer, maintaining a closed ring structure. A 

comparison of the ab initio and MIMOMM (4 bilayer) optimized geometries of the Si-O- 

C ring insertion site on the Si-terminated SiC(lll) surface is listed in Table 5.12. The 

major structural change caused by this O atom insertion is the 0.8A increase in the atom 

1-2 separation from the bare reconstructed cluster. This structural change has the effect 

of opening up the surface bilayer ring, which will help additional O atoms impinging on 

the surface penetrate deeper and react with subsurface atoms. Figures 5.27, 5.28, 5.29, 

and 5.30 show comparisons of the ab initio and MIMOMM (4 bilayer) optimized geometries 

of the Si-O-C ring insertion site on the Si-terminated SiC(lll) surface. As we've seen in 

previous cases, the MIMOMM optimization reduces the overall distortion of the cluster. 

Si9Ci3H25 Sic)Ci3H250 SigCi3H250 

Ab Initio Ab Initio MIMOMM 
4 Bilayer 

Dist (A) 
3.147 3.917 3.822 1 2 

1 4 1.904 1.895 1.877 

1 7 1.903 1.895 1.887 

1 8 1.903 2.832 2.766 

1 9 3.641 4.063 3.997 

1 48 - 1.647 1.619 

8 48 - 1.427 1.430 

Angle (°) 
111.114 109.021 7 1 48 

148 8 - 134.114 130.052 
48 8 2 - 111.142 99.700 

8 29 107.174 108.368 106.901 
2 9 3 107.174 114.700 115.113 

9 37 107.174 112.168 112.370 

3 7 1 107.174 114.847 112.724 

Table 5.12 Comparison of ab initio and MIMOMM optimized (4ROHF 6-31G*) Si-terminated 
SiC(lll) cluster geometry with an O atom adsorbed at a Si-O-C ring insertion site. 
Atom 48 is the adsorbed O atom. The bare cluster results are listed for comparison. 
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Figure 5.27    Ab initio optimized 4ROHF (6-31G*) geometry of Si-O-C ring insertion, Si- 
terminated SiC(lll) surface. 

Figure 5.28    MIMOMM optimized 4ROHF (6-3lG*/4 bilayer BC) geometry of Si-O-C 
ring insertion, Si-terminated SiC(lll) surface. 
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Figure 5.29    Ab initio optimized 4ROHF (6-31G*) geometry of Si-O-C ring insertion 
bridge, Si-terminated SiC(lll) surface. 

Figure 5.30    MIMOMM optimized 4ROHF (6-31G*/4 bilayer BC) geometry of Si-O-C 
subsurface bridge, Si-terminated SiC(lll) surface. 
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5.8.4 0-Si-O-Si Ontop and Ring Insertion: Structure. Figure 5.31 shows the 

ab initio optimized geometry of the Si-terminated SiC(lll) cluster with two O atoms 

adsorbed. This structure was obtained by starting with the optimized geometry of the Si- 

terminated SiC(lll) cluster with one 0 atom adsorbed into a ring site (between Si atom 1 

and C atom 8), and placing a second O atom 1.6Ä above Si atom 1. This starting point was 

selected to bias the optimized geometry towards Si atom 1 being bonded to both O atoms 

because this configuration is similar to the lowest energy product state to 02 adsorption 

onto the Si(lll) surface (after dissociation of the molecular precursor) [128]. This process 

is hypothesized to be a first step in the formation of an Si02 layer on Si(lll) grown by 

exposure to oxygen. A comparison of the geometry of the bare cluster, the cluster with 

one O atom adsorbed in a ring site, and the cluster with two O atoms adsorbed is listed 

in Table 5.13. 

Si9Ci3H25 *5\-\Jring~0\ {Jontop^l ^ring ^1 
Ab Initio Ab Initio Ab Initio 

Dist (A) 
J- {Jontop - - 1.695 

J- {Jring - 1.647 1.632 
14 1.904 1.895 1.873 
1 7 1.903 1.895 1.872 

o {Jring - 1.427 1.428 
2 8 1.903 1.913 1.914 
37 1.903 1.911 1.915 

Angle (°) 
. 109.037 ^ontop~*-~{srzng 

^ontop'^'^ - - 105.711 

{Jontop~*-~* - - 107.831 
x-yj-rifig-o - 134.114 133.649 
{Jring-o-Z - 111.142 110.610 

2-9-3 111.593 114.700 114.642 
3-7-1 111.593 114.847 115.780 

•" *--\Jring - 111.095 111.151 

Table 5.13     Comparison of Si-terminated SiC(lll) cluster ab initio optimized geometry (6-31G*) 
with 0, 1, and 2 O atoms adsorbed. 

5.8.5 Comparison of Adsorption Site Energetics. Table 5.14 lists the Hartree- 

Fock and MP2 6-31G* energies of the Si-terminated SiC(lll) EC, the clean surface and 

with O atom (s) adsorbed at various sites on the cluster. (The MP2 energies were calculated 
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Figure 5.31    Ab initio optimized 4ROHF (6-31G*) geometry of Si-terminated SiC(lll) 
cluster with two 0 atoms adsorbed, 0ontopSi-Oring-Si. 
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at the Hartree-Fock optimized geometries.) Large atom displacements in the EC were 

observed in bridge site oxidation, so MIMOMM calculations using both the 2 bilayer and 

4 bilayer bulk clusters were performed (a discussion of the optimized structures follows). 

As before, we see that use of MIMOMM increases the EC energies, which one expects 

from a constrained optimization. Table 5.15 lists the oxidation energies for the ontop, 

bridge, and ring insertion sites on the Si-terminated surface. We see that the inclusion 

of electron correlation in the MP2 calculation has a significant effect on the predicted 

adsorption energies, though the relative energies of the different sites are the same at both 

the HF and MP2 levels of theory.As was seen in the hydrogenation results, MIMOMM has 

essentially no effect on the oxidation energy at the ontop site. However, use of MIMOMM 

decreases the oxidation energy at the bridge site by 4.5 ^£ using the 2-bilayer bulk cluster, 

and 11.6 ££ using the 4-bilayer bulk cluster. Overall, adsorption at a bridge site on the 

Si-terminated surface is energetically favored over an ontop site. 

The adsorption energy for 2 O atoms, one O atom in a ring insertion site and one 

O atom at an ontop site, with both O atoms bonded to the same Si surface atom, is 

quite large. Si02 is not a stable gas phase molecule, so it is unlikely that O atoms will 

etch the Si-terminated SiC(lll) surface with this two O atom adsorption structure as an 

intermediate. However, this structure is predicted to be' an initial state in the formation 

of a silicon dioxide layer on the Si(lll) surface by exposing the Si(lll) surface to a flux of 

02 molecules. A similar mechanism may be involved in the growth of an insulating layer, 

predominantly silicon dioxide, on the Si-terminated SiC(lll) surface. 

5.9    Oxidation of the C-terminated SiC(lll) Surface 

5.9.1 O-C Ontop Site Adsorption: Structure . O atom adsorption at an ontop 

site on the C-terminated SiC(lll) surface was modeled by placing an O atom 1.1 A directly 

above C atom 1 of the EC (starting position I in Figure 5.21), a distance shorter than the 

expected optimum. The overall multiplicity of the molecule was set to 4, to insure the 

0 atom could only bond to one Si atom on the surface. (This is the same procedure as 

was used for the Si-terminated surface.) Figure 5.32 shows the ab initio optimized clean 

C terminated EC, offset about 10° from the yz plane.   Figure 5.33 shows a view of the 
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Surface Model 

6-31G* Hartree Fock Energy (H) 

Ab Initio 
MIMOMM 

2 Bilayer 
MIMOMM 
4 Bilayer 

Si-terminated (Si9Ci3H25) 
-3107.287434 
-3182.185212 
-3182.236653 
-3182.146984 
-3257.051971 
-3182.083401 
-3182.083407 
-3182.083407 

-3107.285539 
-3182.183299 
-3182.227517 

b 
c 
b 

-3107.286685 
a 

-3182.217861 
-3182.137410 

c 
-3182.070495 

Bare 
O-Si ontop 
Si-O-Si bridge 
Si-O-C ring 

Si-O-C ring 
Si-O-C ring 
Si-O-C ring 

4R0HF 
4ROHF 
2ROHF 
4ROHF 
4ROHF 
2ROHF 
2GVB 
2GVB 

2ROHF orbitals 
Huckel orbitals 

O atom 3ROHF -74.778966 

Surface Model 

6-31G* MP2 Energy (H) 

Ab Initio 
MIMOMM 
2 Bilayer 

MIMOMM 
4 Bilayer 

Si-terminated (SigCisR^s) 
-3109.704721 
-3184.750274 
-3184.862621 
-3184.736188 
-3259.788683 

-3109.704177 
-3184.749495 
-3184.855145 

b 
c 

-3109.704136 
a 

-3184.844983 
-3184.726729 

c 

Bare 
O-Si ontop 
Si-O-Si bridge 
Si-O-C ring 
V0nt0p-bl-\Jring-Kj 

4ROHF 
4ROHF 
2ROHF 
4ROHF 
4ROHF 

O atom 3ROHF -74.879847 
a     Not calculated because minimal strutural change 

means bulk cluster has minor effect on energy 
b     Not calculated because 4 bilayer BC determined better 
c     Not calculated because MIMOMM effect on energy could be 

reliably estimated 

Table 5.14    6-31G* energies of SiC clusters used in calculating energy of oxidation. 

(Si9C13H25) + O 
(Si9C13H25) + O 
(Si9Ci3H25) + O 
(Si9C13H25) + 20 

(Si9Ci3H25) 

(Si9Ci3H25) 
(SigCi3H25) 
(Si9Ci3H25) 

+ 
+ 
+ 
+ 

O 
o 
o 
20 

(Si9C13H25)0 ontop 
(Si9Ci3H25)0 bridge 
(Si9Ci3H25)0 ring 
(Si9Ci3H25)02 ontop & ring 

(Si9Ci3H25)0 ontop 
(Si9C13H25)0 bridge 
(Si9C13H25)0 ring 
(Si9Ci3H25)02 ontop & ring 

Ab Initio    MIMOMM    MIMOMM 
2 Bilayer        4 Bilayer 

Hartree-Fock AE (££ ) 
-74.5 -74.5 - 

-106.8 -102.3 -92.5 
-50.6 - -45.0 

-129.6 

MP2 AE (£f& ) 
-104.0 -103.8 - 
-174.5 -170.1 -163.8 
-95.1 - -89.3 

-203.5 - - 

Table 5.15    Comparison of energy of oxidation, Si-terminated SiC(lll) surface. 
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ab initio optimized EC with an 0 atom adsorbed on C atom 1. Adsorption of the O 

atom raises C atom 1 up out the surface plane closer to a lattice position, very similar 

to structural change caused by H atom adsorption. Because the overall distortion-of the 

cluster is small, the IMOMM optimized structure results in small differences from the ab 

initio result and is not shown. 

V    0   0 ö o o 

vV 

o o 

Figure 5.32    Clean C-terminated SiC(lll) EC, ab initio optimized geometry. 

5.9.2 C-O-C Bridge Site Adsorption . O atom adsorption at a bridge site on 

the Si-terminated surface was modeled by placing an O atom 1.5 Ä above the plane of the 

surface Si atoms, and halfway between C atoms 1 and 2, starting position II in Figure 5.21. 

The overall multiplicity of the EC was set to 2 to force the O atom to form two bonds with 

the surface Si atoms. 

As was seen in the Si-terminated EC, adsorption of an O atom at a bridge site 

induces significant distortion of the EC structure. Figure 5.34 shows the ab initio optimized 

structure of the C-terminated EC with 1 O atom adsorbed at a bridge site. The pattern of 

atom displacements is the same as in the Si-terminated EC, though the displacements are 

larger in the C-terminated cluster. Figure 5.35 shows the MIMOMM optimized structure 
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Figure 5.33 Ab initio optimized C-terminated SiC(lll) EC with one O atom adsorbed in an 
ontop site, 6-31G* optimized geometry. Adsorption of the O atom raises C atom 1 
out of the plane of the other surface C atoms, but otherwise causes minor structural 
distortions. 

using the 2 bilayer BC. The magnitude of atom displacements is reduced from the ab initio 

optimized EC, though the pattern of displacements is the same. (Atom displacements for 

the various cases are listed in Table 5.16. A comparison of the optimized geometries is 

listed in Table 5.17.) Figure 5.36 shows the MIMOMM optimized EC geometry using the 

4 bilayer BC. As was seen for the Si-terminated EC, addition of steric forces underneath 

the EC greatly reduces the atom displacements in the EC. 

With the EC constrained by the 4 bilayer BC, O atom adsorption at a bridge site is 

predicted to be higher in energy than the separated EC and 0 atom. This result is quite 

strange, and indicates that a Hartree-Fock (single configuration) model of these bonds is 

inadequate. 
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Figure 5.34    C-terminated SiC(lll) ab initio optimized EC with 1 O atom adsorbed in a 
bridge site. 

Figure 5.35    C-terminated SiC(lll)  surface with 0  atom adsorbed in a bridge site, 
IMOMM optimized geometry, 2 bilayer BC. 
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Atom Displacements (Ä) Caused by 
C-O-C Bridge Site Adsorption 

Atom Ab Initio IMOMM: 2 Bilayer IMOMM: 4 Bilayer 
6x t>y 6z 6x *y b% <§x *y 6z 

1 0.418 0.033 0.030 0.356 -0.041 0.038 0.335 -0.028 0.073 
2 -0.418 0.033 0.030 -0.355 -0.041 0.041 -0.331 -0.034 0.075 
3 0.000 -0.143 -0.091 0.000^ -0.106 -0.053 -0.002 -0.097 0.010 
4 0.396 0.063 0.320 0.240 -0.026 0.204 0.213 -0.003 0.178 
5 -0.396 0.063 0.320 -0.239 -0.025 0.204 -0.211 -0.006 0.176 
6 0.000 -0.113 -0.163 0.000 -0.065 -0.084 -0.001 -0.077 -0.010 
7 0.101 -0.012 -0.076 0.104 -0.013 -0.073 0.087 -0.011 -0.019 
8 0.000 0.038 -0.574 0.001 0.040 -0.444 0.001 0.073 -0.330 
9 -0.101 -0.012 -0.076 -0.104 -0.013 -0.072 -0.084 -0.013 -0.018 

10 0.132 0.018 0.287 0.076 0.007 0.160 0.094 -0.007 0.121 
11 -0.132 0.018 0.287 -0.076 0.006 0.159 -0.094 -0.009 0.119 
12 -0.000 -0.009 -0.160 0.000 -0.025 -0.085 0.001 -0.030 -0.008 
13 0.008 -0.006 -0.069 0.029 -0.001 -0.063 0.029 -0.004 -0.010 
14 -0.000 -0.038 -0.487 0.000 0.012 -0.367 0.000 0.036 -0.229 
15 -0.008 -0.006 -0.069 -0.029 -0.001 -0.062 -0.028 -0.004 -0.009 
16 -0.000 -0.090 -0.224 0.000 -0.039 -0.181 0.000 -0.007 -0.074 
17 -0.094 -0.045 -0.197 -0.062 -0.028 -0.118 -0.015 0.035 0.049 
18 -0.037 -0.004 -0.076 -0.017 0.011 -0.044 0.008 -0.010 0.004 
20 -0.043 0.044 0.206 0.002 -0.014 0.081 0.035 0.010 0.050 
21 0.094 -0.045 -0.197 0.062 -0.028 -0.119 0.015 0.036 -0.065 
22 0.037 -0.004 -0.076 0.016 0.011 0.043 -0.010 -0.007 0.000 

Table 5.16 Atom displacements induced by O atom adsorption onto a bridging site of a 
C-terminated SiC(lll) surface. Displacements are measured from the 6-31G* 
optimized geometry of the C9Si13H25 cluster. 
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Figure 5.36    C-terminated SiC(lll) surface with O  atom adsorbed in a bridge site, 
IMOMM optimized geometry, 4 bilayer BC. 
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CgSii3H25 C9Si13H250 C9Sii3H250 C9Sii3H250 

Ab Initio Ab Initio MIMOMM 
2 Bilayer 

MIMOMM 
4 Bilayer 

Dist (Ä) 
1.505 1.568 1.590 1 Oads 

2 Oads - 1.505 1.569 1.591 

1 2 3.152 2.361 2.440 2.476 

1 4 1.876 1.896 1.951 1.958 

1 8 1.871 1.842 1.822 1.809 

4 10 1.900 1.946 1.948 1.965 

5 11 1.900 1.946 1.948 1.965 

7 13 1.923 1.919 1.915 1.910 

8 14 1.923 1.837 1.846 1.817 

Angle (°) 
100.641 102.163 102.223 1 Oad5 2 

Oads 1 4 - 132.469 137.390 138.550 

18 2 114.796 77.939 84.064 86.335 

4 18 114.584 101.544 104.476 103.922 

8 29 114.316 116.027 116.710 117.744 

9 3 7 114.316 105.040 105.952 106.158 

Torsion(°) 
-0.310 -16.989 -11.570 -7.765 10 11 12 14 

20 18 17 16 -1.105 14.722 8.466 4.190 

Table 5.17 Comparison of ab initio and MIMOMM optimized C-terminated SiC(lll) cluster 
geometry with 1 O atom adsorbed onto C-O-C bridge site. The bare cluster results 
are listed for comparison. 6-31G* basis set used in all calculations. 
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5.9.3    C-O-Si Ring Insertion:  Structure. A comparison of the ab initio and 

MIMOMM (4 bilayer) optimized geometries of the Cl-048-Si8 (atom numbers refer to 

Figure 5.37) ring insertion site on the C-terminated SiC(lll) surface is listed in Table 5.18. 

The overall structural distortion is similar to that seen in the Si-terminated case. The 

major structural change caused by the O atom insertion is the 0.8Ä increase in the atom 

1-2 separation. This has the effect of opening up the surface bilayer ring, which will help 

additional O atoms impinging on the surface penetrate deeper and react with subsurface 

atoms. Figures 5.37, 5.38, 5.39, and 5.40 show comparisons of the ab initio and MIMOMM 

(4 bilayer) optimized geometries of the C-O-Si ring insertion site on the C-terminated 

SiC(lll) surface. (Figures 5.39 and 5.40 are different views of the structures shown in 

Figures 5.37 and 5.38.) As we've seen in previous cases, the MIMOMM optimization 

reduces the overall distortion of the cluster. C-O-Si ring insertion is predicted to be the 

lowest energy O atom adsorption site on the C-terminated SiC(lll) surface, unlike the 

Si-terminated surface, and should play a more important role in the oxidation of the C- 

terminated surface. 

CgSii3H25 C9C13H25O CgSiißH^sO 
Ab Initio Ab Initio MIMOMM 

4 Bilayer 
Dist (A) 

3.151 3.848 3.706 1 2 
1 4 1.876 1.886 1.852 
17 1.871 1.878 1.862 
1 9 3.661 4.048 3.945 

1 48 - 1.378 1.361 
8 48 - 1.655 1.647 

Angle (°) 
119.677 119.985 7 148 

1 48 8 - 128.014 119.977 
48 8 2 - 113.372 106.389 
82 9 114.316 116.235 114.479 
2 9 3 114.795 117.994 118.194 
9 3 7 114.316 120.988 118.563 
37 1 114.795 117.856 116.783 

Table 5.18 Comparison of ab initio and MIMOMM optimized (4ROHF 6-31G*) C-terminated 
SiC(lll) cluster geometry with an O atom adsorbed at a C-O-Si ring insertion site. 
Atom 48 is the adsorbed O atom. The bare cluster results are listed for comparison. 
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Figure 5.37    Ab initio optimized 4ROHF (6-31G*) geometry of C-O-Si ring insertion site, 
C-terminated SiC(lll) surface. 

Figure 5.38    IMOMM optimized 4ROHF (6-31G*/4 bilayer BC) geometry of C-O-Si ring 
insertion site, C-terminated SiC(lll) surface, XZ view 
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Figure 5.39    Ab initio optimized 4ROHF (6-31G*) geometry of C-O-Si ring insertion site, 
C-terminated SiC(lll) surface, YZ view 

Figure 5.40    IMOMM optimized 4ROHF (6-31G*/4 bilayer BC) geometry of C-O-Si ring 
insertion site, C-terminated SiC(lll) surface, YZ view 
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5.9.4 0-C-O-Si Ontop and Ring Insertion: Structure. Figure 5.41 shows the 

ab initio optimized geometry of the C-terminated SiC(lll) cluster with two 0 atoms 

adsorbed. This structure was obtained by starting with the optimized geometry of the 

C-terminated cluster with one O atom adsorbed into a ring site (between C atom 1 and 

Si atom 8), and placing a second O atom 1.3Ä above C atom 1. This starting point was 

selected to bias the optimized geometry towards C atom 1 being bonded to both 0 atoms 

because this configuration is a logical intermediate state for etching of C atoms via C02 

elimination. We see that addition of the 0 atom to an ontop adsorption site causes some 

additional distortion in the cluster geometry. We see that the Cl-Si4 and Cl-Si7 bond 

lengths are elongated by approximately 0.06Ä after addition of the second O atom, and 

that the angle l-Orinä-8 has increased by 11°. These changes are very steps in the direction 

of the geometry changes that would be required for the desorption of C02; however, these 

changes are too small to support any such conclusions. 

CgSii3H25 \^-KJring-v5l ^ontop^'^ring ^1 

Ab Initio Ab Initio Ab Initio 
Dist (A) 

. 1.334 -I- ^ontop 

* {Jring - 1.378 1.417 
1 4 1.876 1.886 1.943 
1 7 1.871 1.879 1.944 

Ö {Jring - 1.655 1.636 
2 8 1.871 1.875 1.895 
3 7 1.871 1.875 1.872 

Angle (•) 
. _ 110.706 {Jontop~*-~{Jring 

{Jontop~*-~Q - - 108.561 

^ontop~ -L"' - - 105.923 
l-yJring-o - 128.015 139.135 

{Jring~*~^ - 113.372 115.056 
2-9-3 114.796 117.994 117.904 
3-7-1 114.796 117.856 115.505 

>*--\Jring - 128.014 115.089 

Table 5.19     Comparison of C-terminated SiC(lll) cluster ab initio optimized geometry (6-31G*) 
with 0, 1, and 2 O atoms adsorbed. 
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Figure 5.41 Ab initio optimized (4ROHF 6-31G*) geometry of C-terminated SiC(lll) cluster 
with two O atoms adsorbed, ontop and ring insertion. Addition of O at an ontop 
site causes no additional distortion to the cluster with an O atom adsorbed at a ring 
site. 
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5.9.5    Comparison of Adsorption Site Energetics. The behavior of Si and ex- 

terminated SiC(lll) clusters in the reconstruction and H atom adsorption calculations 

was very similar, both in the optimized geometries and relative energies. For 0 atom 

adsorption, we've seen that the the optimized geometries of the Si and C-terminated clus- 

ters are also quite similar. However, we shall now see that the adsorption energies of the 

different adsorption sites are rather different. 

Before comparing O atom adsorption on the Si and C-terminated clusters, we need 

to emphasize the importance of electron correlation in predicting adsorption energies. 

Table 5.20 lists the Hartree-Fock ab initio and MIMOMM optimized energies of the C- 

terminated SiC(lll) with an O atom adsorbed at ontop, bridge, and ring sites, as well as 

the MP2 energies calculated at the Hartree-Fock optimized geometries. Table 5.21 lists 

the Hartree-Fock and MP2 oxidation energies for these three sites. Immediately obvious 

in Table 5.21 is the significance of including electron correlation. The Hartree-Fock MI- 

MOMM 4 bilayer binding energy involved in creating a bridge adsorption site is positive, 

which implies that this site would not form. However, the MP2 binding energy of this 

adsorption site is rather large and negative. The C-0 bondlengths in this adsorption ge- 

ometry are much larger than typical gas phase (unconstrained) C-0 bondlengths, so it is 

not too surprising that a Hartree-Fock description of the C-O-C bridge site is so poor. 

On the Si-terminated SiC(lll) surface, Si-O-Si bridge site formation produced the 

largest binding energy, followed by ontop site formation, then ring insertion. On the C- 

terminated SiC(lll) surface, O atom ring insertion produces that largest binding energy, 

followed by the C-O-C bridge, then O-C ontop adsorption. This is interesting because O 

atom ring insertion is a more likely first step in the formation of a C02 gas phase precursor, 

i.e., is more likely to lead towards C atom etching than bridge site formation. The binding 

energy of a 2 O atom adsorption structure that is a likely C02 gas phase precursor is also 

listed in Table 5.21. The energetics of C atom etching via this precursor will be discussed 

in Section 5.12. 
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Surface Model 

6-31G* Hartree-Fock Energy (H) 

Ab Initio 
MIMOMM 

2 Bilayer 
MIMOMM 

4 Bilayer 

C-terminated (CgSiisH^s) 
-4111.394766 
-4186.238773 
-4186.189023 
-4186.266287 
-4261.127424 
-4186.216075 
-4186.216087 

-4111.393840 
-4186.237856 
-4186.175370 

b 
c 
b 

-4111.393770 
a 

-4186.163413 
-4186.255885 

c 
-4186.201713 

Bare 
O-C ontop 
C-O-C bridge 
C-O-Si ring 

C-O-Si ring 
C-O-Si ring 

4R0HF 
4ROHF 
2ROHF 
4ROHF 
4ROHF 
2ROHF 

2GVB 2ROHF orbitals 
O Atom 3ROHF -74.778966 

Surface Model 

6-31G* MP2 Energy (H) 

Ab Initio 
MIMOMM 

2 Bilayer 
MIMOMM 
4 Bilayer 

C-terminated (CgSiiaH^s) 
-4113.591320 
-4188.605864 
-4188.632281 
-4188.641555 
-4263.674058 

-4113.590790 
-4188.605138 
-4188.621922 

b 
c 

-4113.590379 
a 

-4188.611703 
-4188.631201 

c 

Bare 
O-C ontop 
C-O-C bridge 
C-O-Si ring 

4ROHF 
4ROHF 
2ROHF 
4ROHF 
4ROHF 

O Atom 3ROHF -74.879847 
a     Not calculated because minimal strutural change 

means bulk cluster has minor effect on energy 
b     Not calculated because 4 bilayer BC determined better 
c     Not calculated because MIMOMM effect on energy could be 

reliably estimated 

Table 5.20    6-31G* energies of C-terminated SiC clusters used in calculating energy of 

oxidation. (The 6-31G* energy for O atom is -74.778966 H.) 

Ab Initio    IMOMM    MIMOMM 

(CgSii3H2s) + O 
(CgSiisR^s) + o 
(CgSii3H25) + o 
(CgSii3H~25) + 20 

(C9Sii3H25) + O 
(CgSii3H25) + O 
(CgSii3H25) + O 
(CgSii3H25) + 20 

(CgSi13H25)0 ontop 
(CgSi13H25)0 bridge 
(CgSi13H25)0 ring 
(C9Sii3H25)02 ontop fe ring 

(C9Sii3H25)0 ontop 
(C9Si13H25)0 bridge 
(C9Sii3H25)0 ring 
(C9Sii3H25)02 ontop & ring 

2 Bilayer      4 Bilayer 
Hartree-Fock A E (kcal/mol) 
-40.8 -40.8 
-9.6 -1.7 +5.8 
-58.1 - -52.2 
-109.0 

MP2 A E (kcal/mol) 

-101.0 

-84.5 -84.5 
-101.1 -94.9 
-106.9 - 
-202.7 - 

Table 5.21    Comparison of energy of oxidation,C-terminated SiC(lll) surface 

5-60 



5.10   Surface Vacancies 

5.10.1 Si Vacancy at the Si-terminated SiC(lll) Surface: Structure. The Si 

atom vacancy in the Si-terminated SiC(lll) surface was modeled by removing Si atom 

1 and optimizing the remaining cluster in a 4ROHF configuration. Removing Si atom 1 

breaks 3 SiC bonds and leaves C atoms 7, 8, and 4 with dangling bonds. The 4ROHF 

configuration should favor bond formation between atoms 7 and 8. This is a reasonable 

choice for the C vacancy case (in which atoms 7 and 8 are silicons) discussed in the next 

section, and was used here for consistency. The initial separation between C atoms 7 and 

8 is 3.14 Ä. This separation is too large to permit the formation of a C-C bond when 

the energy required to deform the cluster to enable these atoms move close enough to 

each other to bond is considered. This result is a consequence of the small size of the 

single occupied carbon orbitals compared to the lattice dimensions. Instead, Si atom 3 is 

observed to move 0.27 A down along the Z axis, and the Si3-C7 bond length decreases from 

1.9A to 1.73A, i.e., the Si-C bonding has strengthened. C atom 4 has been displaced 0.66Ä 

away from its initial position. (Atom displacements and selected internal coordinates from 

both cases are listed in Tables 5.22 and 5.23.) Because of the relatively minor differences 

between the ab initio and MIMOMM optimized structures, MIMOMM raises the energy 

for creation of a Si vacancy by only 4 |^. 

The ab initio optimized energy for the 2ROHF reconstruction around a Si vacancy was 

found to be 22 *$ higher in energy than the 4ROHF. A 2ROHF MIMOMM optimization 

was not performed because this was not the minimum energy reconstruction. The ab initio 

2ROHF optimized geometry is shown in Figure 5.44. In this solution, we see that both Si 

atoms 2 and 3 have sunk down along the Z axis, and the Si-C bond lengths around these Si 

atoms have decreased. Even the doublet spin configuration does not force bond formation 

between C atoms 2 and 3. 

One feature of these results that should be highlighted is that the H atoms bonded 

to C atom 4 no longer point in lattice directions. Those H atoms belong to Region 5, 

so there are no constraints on their optimized geometry. This discrepancy arises because 

this EC is really too small to model vacancies. Ideally, all the atoms around the vacancy 

should be at least one bond away from a terminating H atom.  Linking the EC and BC 
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using Morokuma's Region 2-Region 3 scheme could force the bond directions of these H 

atoms to be correct, but would not correct the termination problem. 

5.10.2 C Vacancy in the C-terminated SiC(lll) Surface. The C atom vacancy in 

the C-terminated SiC(lll) surface was modeled by removing C atom 1 and optimizing the 

remaining cluster in a 4ROHF configuration. Removing C atom 1 breaks 3 SiC bonds and 

leaves Si atoms 7, 8, and 4 with dangling bonds. The 4R0HF configuration favors bonding 

between atoms 7 and 8, leaving three undercoordinated atoms, 4, 2, and 3, in the cluster. 

Figures 5.45 and 5.46 show the ab initio and MIMOMM (4 bilayer) optimized geometries 

for the C-terminated EC with a C vacancy. In both cases Si atoms 7 and 8 on either side 

of the vacancy have bonded, forming a 5 membered ring in the surface bilayer. This is very 

different from the 4ROHF reconstruction observed around the Si vacancy. The dangling 

bond orbitals are large enough for a bond to form even though Si atoms 7 and 8 are initially 

separated by 3.lA. In the ab initio optimized result, Si atom 4 has moved 0.95Ä away from 

its initial position. The bottom layer silicon atoms, 17-22, are seen to have been displaced 

by as much as 0.19A along the Z axis in response the the reconstruction around the C 

vacancy. (Atom displacements and selected internal coordinates from both cases are listed 

in Tables 5.24 and 5.25.) 

As we've seen before, the addition of the steric forces from the 4 bilayer BC in 

the MIMOMM optimized result greatly reduces the observed atom displacements. The 

displacement of Si atoms 7 and 8 have not changed much in the MIMOMM optimized 

result, as the steric forces of the BC have no direct effect on these atoms. However, the 

displacement of Si atom 4 has been reduced to 0.26Ä, and Si atoms 17-22 scarcely budge 

from their original positions. The displacements of C atoms 2 and 3 are also significantly 

reduced, because the atoms in the BC impose steric constraints on Si atoms 5 and 6. 

This force on Si atoms 5 and 6 means that C atoms 2 and 3 cannot drag them around 

unhindered, reducing the displacements of C atoms 2 and 3. 
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Figure 5.42 Si-terminated SiC(lll) EC with a Si vacancy, ab initio 4ROHF optimized geometry. 
Si atom 3 has moved down 0.27 Ä along the Z axis, and the separation between Si 
3 and C 7 has shortened by 0.17 A. Atom C4 has moved away from the surface 
bilayer, but the overall distortion of the EC is small. 

Figure 5.43 Si-terminated SiC(lll) EC with a Si vacancy, MIMOMM 4ROHF optimized geom- 
etry, 4 bilayer bulk cluster. MIMOMM significantly reduces the displacement of C 
atom 4. The effect on C8 is smaller but also noticeable. 
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Atoir i Displacements (Ä) Caused by 
Si Vacancy 

Atom Ab Initio IMOMM: 4 Bilayer 
6x 6y Sz 6x Sy Si 

1 
2 0.114 0.006 0.034 0.013 -0.014 0.041 
3 -0.023 -0.0369 -0.274 -0.042 -0.030 -0.270 
4 -0.537 -0.335 -0.203 -0.117 -0.078 -0.017 
5 0.134 0.089 -0.023 0.017 0.002 0.020 
6 0.125 0.010 0.102 0.023 0.013 0.111 
7 -0.029 0.186 0.042 -0.002 0.130 0.006 
8 0.229 -0.096 0.008 0.119 -0.047 0.043 
9 0.029 0.002 -0.007 0.008 -0.002 0.022 

10 -0.049 -0.088 -0.099 -0.016 -0.006 0.022 
11 0.041 0.020 -0.026 0.003 0.001 0.013 
12 -0.014 -0.015 0.044 -0.008 0.008 0.051 
13 -0.021 -0.052 0.111 -0.006 -0.021 0.060 
14 0.024 -0.052 0.049 -0.006 -0.013 -0.004 
15 -0.006 -0.029 -0.034 0.005 -0.012 -0.001 
16 -0.016 -0.043 0.063 0.004 -0.001 0.018 
17 0.031 -0.063 0.074 -0.006 0.005 0.002 
18 0.003 0.012 -0.049 0.011 0.007 0.018 
19 -0.001 -0.041 0.030 -0.002 0.010 0.034 
20 0.005 -0.046 0.051 -0.001 -0.003 0.030 
21 0.040 0.003 -0.004 0.009 0.005 -0.007 
22 -0.026 -0.011 0.006 -0.002 0.010 0.048 

Table 5.22    Atom displacements induced by a Si atom vacancy at the Si-terminated SiC(lll) 
surface. 

SigCi3H25 
No Vacancy 

SigCi3H25 
Ab Initio 

Si8C!3H25 
MIMOMM 

4 Bilayer 
Dist (1) 

1.903 
3.120 
3.062 

1.723 
3.841 
3.437 

1.719 
3.357 
3.273 

3 7 
47 
78 

Angle (•) 
91.277 
91.277 

107.174 

83.648 
87.888 

107.666 

87.097 
88.752 

107.367 

3 78 
782 
8 29 

Tdrsion(°) 
179.999 

0.248 
0.000 

170.213 
2.568 
0.820 

-177.648 
0.514 
0.002 

5 11 4 10 
10 11 12 14 
20 18 22 17 

Table 5.23 Comparison of ab initio and MIMOMM optimized geometries of Si-terminated cluster 
with a Si surface vacancy. The results for the Si-terminated cluster without the 
vacancy are listed for comparison. 
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Figure 5.44     Si-terminated SiC(lll) EC with a Si vacancy, 2ROHF ab initio optimized geometry. 
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Figure 5.45 C-terminated SiC(lll) EC with a C vacancy, ab initio optimized geometry (6-31G* 
basis set). Si atoms 7 and 8, which had been bonded to C atom 1 that was removed, 
have now moved significantly from their original positions and bonded to each other, 
causing distortions in the bottom bilayer. Si atom 4 has moved away from the surface 
bilayer. 

Figure 5.46 C-terminated SiC(lll) EC with a C vacancy, MIMOMM optimized geometry, 4 
bilayer bulk cluster (6-31G* basis set). As in the ab initio case, Si atoms 7 and 8 
have bonded. However, the steric constraints of the BC have greatly reduced the 
displacement of Si atom 4. The overall distortion in the cluster is visibly reduced 
as well. 
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Atom Displacements (Ä) Caused by 
C Vacancy 

Atom Ab Initio IMOMM: 4 Bilayer 
6x Sy 6z 8x <5y 6z 

1 - - - - - - 
2 0.186 0.167 0.014 0.011 0.048 0.006 
3 0.229 0.095 0.004 0.046 -0.017 0.006 
4 -0.780 -0.438 -0.312 -0.231 -0.133 -0.033 
5 0.118 0.077 0.010 -0.010 0.031 -0.012 
6 0.121 0.078 -0.009 0.020 -0.026 -0.012 
7 0.392 -0.193 0.080 0.185 -0.249 0.022 
8 0.019 0.452 0.087 -0.116 0.285 0.022 
9 0.226 0.139 -0.085 0.055 0.031 0.019 

10 -0.040 -0.018 -0.080 -0.042 -0.026 -0.018 
11 0.038 0.021 0.014 -0.010 0.018 0.012 
12 0.038 0.027 -0.005 0.008 -0.019 0.012 
13 0.082 -0.008 0.114 0.020 -0.046 -0.008 
14 0.029 0.080 0.124 -0.026 0.039 -0.009 
15 0.067 0.040 -0.082 0.020 0.011 -0.017 
16 0.041 0.024 -0.004 0.021 0.011 -0.036 
17 0.057 0.004 0.187 -0.017 0.014 -0.005 
18 0.026 -0.018 -0.098 0.016 0.008 -0.003 
19 -0.005 0.006 0.163 0.010 -0.035 0.025 
20 0.031 0.052 0.178 0.004 -0.025 -0.005 
21 -0.001 -0.007 0.182 -0.022 0.026 0.025 
22 -0.000 0.031 -0.109 0.014 0.009 -0.003 

Table 5.24    Atom displacements induced by a C atom vacancy at the C-terminated SiC(lll) 
surface. 

C9S113H25 
No Vacancy 

C8Sii3H25 
Ab Initio 

C8Sii3H25 
MIMOMM 

4 Bilayer 
Dist (Ä) 

1.871 
3.152 
3.143 

1.887 
4.072 
2.398 

1.884 
3.277 
2.500 

3 7 
47 
78 

Angle (°) 
90.130 
90.130 

114.315 

100.214 
100.214 
105.976 

98.647 
98.653 

105.573 

3 78 
7 8 2 
8 2 9 

Torsion(°) 
179.999 

-0.311 
0.000 

164.263 
3.009 
0.243 

-176.232 
0.390 
0.000 

5 11 4 10 
10 11 12 14 
20 18 22 17 

Table 5.25    Comparison of ab initio and MIMOMM optimized geometries of C-terminated cluster 
with a C surface vacancy (6-31G* basis set). 
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5.10.3 Comparison of Surface Vacancy Energetics. To determine the likelihood 

of etching of the SiC(lll) during the oxidation process, the energies of the clusters with 

one Si or C atom removed must also be calculated. Creation of a surface vacancy is likely 

to cause substantial reconstruction within the cluster, so the use of MIMOMM will likely 

be required to obtain physically realistic results. Table 5.26 lists the Hartree-Fock and 

MP2 energies for single atom vacancies (atom 1 has been removed, see Figure 5.42) on 

the Si and C-terminated clusters. Table 5.27 lists the Hartree-Fock and MP2 energies 

required to remove an Si or C atom from these clusters. As was seen in previous results, 

the MIMOMM optimized results are higher in energy than the ab initio optimized results. 

The MP2 vacancy creation energies are larger than the Hartree-Fock energies, showing the 

importance of including electron correlation. 2ROHF Hartree-Fock MIMOMM optimiza- 

tions and MP2 energies were not calculated because the 2ROHF ab initio Hartree-Fock 

optimized energy was signficantly higher in energy than the 4ROHF Hatree-Fock results. 

One note of caution about the results presented in this section is that the ECs used 

in this research were not designed to model surface vacancies. As a result, one of the Si (C) 

atoms around the C (Si) vacancy is bonded to 2 H atoms, violating the requirement that 

the EC atoms involved in a reaction be at least one bond length away from a terminating 

H atom. However, a vacancy in this EC must be used for consistent comparisons with the 

other results described in this chapter. 

5.11    Silicon (111) Surface Calculations 

The primary interest in this investigation is the oxidation of Si and C-terminated sur- 

faces of SiC(lll). However, SiC, bulk silicon, and diamond are all tetrahedrally bonded 

crystals. In order to adapt the embedded cluster used for SiC(lll) for Si(lll) or dia- 

mond(lll), one merely needs to change the atom spacings in the SiC EC based on a Si-C 

separation of 1.89A to 2.35Ä for silicon or 1.541 for diamond. Oxidation of the silicon sur- 

face has been investigated by numerous researchers, so comparisons of the Si(lll) surface 

and the Si-terminated SiC(lll) surface will help to extend the understanding of the oxida- 

tion of silicon to SiC. Comparisons of the C-terminated SiC surface and the diamond(lll) 

surface would be less useful because there is considerable evidence that the "real" diamond 
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Surface Vacancy 

Molecule Model 

6-31G* Hartree-Fock Energy (H) 

Ab Initio MIMOMM 
4 Bilayer 

(Si9Ci3H25) 
(Si8Ci3H25) 
(Si8C13H25) 

Si 

4ROHF 
4ROHF 
2ROHF 
3ROHF 

-3107.287434 
-2818.200471 
-2818.165306 
-288.829374 

-3107.286685 
-2818.193653 

(C9Si13H25) 
(CsSii3H25) 

C 

4ROHF 
4ROHF 
3ROHF 

-4111.394766 
-4073.482303 
-37.677126 

-4111.393770 
-4073.464211 

Molecule Model 

6-31G* MP2 Energy (H) 
Ab Initio MIMOMM 

4 Bilayer 

(Si9C13H25) 
(Si8Ci3H25) 

Si 

4ROHF 
4ROHF 
3ROHF 

-3109.704721 
-2820.514745 
-288.874528 

-3109.704136 
-2820.512337 

(C9Si13H25) 
(C8Si13H25) 

C 

4ROHF 
2ROHF 
3ROHF 

-4113.591320 
-4074.561578 
-37.732769 

-4113.590379 
-4075.553303 

Table 5.26    Surface vacancy energies, Si and C-terminated SiC(lll) clusters. 

ab initio      MIMOMM 
4 Bilayer 

Hartree-FockA E (££) 

(Si9C13H25)    -»■    (Si8C13H25)    +    Si     +161.6 +165.4 
(C9Si13H25)    -►    (C8Si13H25)    +    C      +147.7 +158.4 

MP2 A E (-^f) \ mole ' 

(Si9C13H25)    ->    (Si8C13H25)    +    Si     +197.9 +199.1 
(C9Si13H25)    -►    (C8Si13H25)    +    C      +186.4 +191.0 

Table 5.27    Comparison of 4ROHF energy of vacancy creation,  Si and C-terminated 
SiC(lll) clusters. 
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surface is largely graphitic [129, 130, 131]. The embedded cluster used in this study is 

too small to give an acceptable representation of a graphitic surface, so modeling of the 

diamond(lll) surface was not performed. 

5.11.1 Hybrid Cluster for Si(lll). The embedded cluster for Si(lll) has the 

same configuration as the SiC(lll) ECs; however, the difference in bondlength between 

the two materials has an interesting effect on the lattice structure. Figure 5.48 shows a 

comparison of the Si-terminated SiC(lll) embedded cluster with the Si(lll) EC. This 

figure highlights the effect of the bondlength difference between SiC and silicon. Nearest 

neighbor Si atoms on the SiC(lll) surface are 3.08A apart, but 3.84Ä apart on the Si(lll) 

surface. 

The bulk cluster for Si(lll) is shown in Figure 5.47, with the EC atoms highlighted. 

A three bilayer BC for silicon was chosen for several reasons. First, the importance of 

including steric forces on the bottom of the EC was demonstrated by the SiC results. 

Second, bulk Si(lll) has a 3C stacking sequence (see Figure 5.3), so one needs at least 

three bilayers in the BC to match the experimental structure. Since the silicon lattice is 

not as stiff as SiC, one might suspect that a larger BC would be needed to give an accurate 

representation of the steric environment of bulk silicon. However, using a 3 bilayer BC 

provides an additional data point for bulk cluster design guidance. 

Before performing any calculations, what predictions can we make about potential 

differences between the Si-terminated SiC(lll) and Si(lll) surface? H atom adsorption 

on SiC was seen to cause minimal structural changes, so it seems reasonable that H atom 

adsorption on Si(lll) will be similarly "uninteresting". The binding energy per H atom 

may be different because Si and SiC are different materials. For O atom reactions, adsorp- 

tion at on ontop site caused minimal distortion in the SiC clusters, so one expects ontop 

adsorption on the Si(lll) to be similar. Si-O-Si bridge formation on Si(lll) will probably 

be less favored energetically because of the larger surface atom separation of Si(lll) com- 

pared to Si-terminated SiC(lll). Bridge site formation was seen to cause large distortions 

in the SiC(lll) cluster. Because silicon is less tightly bound than SiC, one expects to 

see larger distortions, and perhaps larger differences between the ab initio and MIMOMM 
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calculations. O atom insertion into the puckered Si surface ring may occur more easily 

because of Si(lll)'s larger lattice spacing. Adsorption of two 0 atoms on Si(lll) should 

be similar to adsorption of two O atoms on Si-terminated SiC(lll). It is unclear how 

the relative binding energies of the different adsorption sites on Si(lll) will compare to 

Si-terminated SiC(lll). 

Figure 5.47 Hybrid cluster for Si(lll) surface studies. EC is the same as was used for SiC(lll). 
Three bilayer BC with 3C stacking sequence used to match bulk silicon; however, 
oxidation results suggest that a deeper BC may be required for silicon. 
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Silicon Carbide 

2.35 Ä 

Silicon 
Figure 5.48 Comparison of the reconstructed (ab initio 6-31G* optimized) Si-terminated 

SiC(lll) and Si(lll) embedded clusters. Both figures are drawn to the same scale, 
highlighting the size difference of these two crystals. 
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5.11.2 Reconstruction of the Si(lll) Surface. The reconstructed SiC(lll) EC is 

shown in Figure 5.48. Based on experience from SiC, only a 4ROHF ab initio optimization 

was performed to model surface reconstruction. The 4ROHF reconstructed Si(lll) surface 

was found to show small deviations from bulk silicon lattice structure. A comparison of 

bulk silicon geometry and the ab initio optimized (6-31G*) Si(lll) cluster geometry is 

listed in Table 5.28. 

Bulk Si22H25 
Silicon Ab Initio 

Dist (A) 
3.84 3.926 1 2 

1 4 2.35 2.370 
1 8 2.35 2.371 

4 10 2.35 2.377 
5 11 2.35 2.377 
7 13 2.35 2.393 
8 14 2.35 2.393 

Angle (•) 
109.47 111.835 1 82 

4 1 8 109.47 110.073 
82 9 109.47 109.621 
937 109.47 109.621 

Torsion(°) 
0.00 0.035 10 11 12 14 

20 18 17 16 0.00 -1.288 

Table 5.28    Comparison bulk silicon lattice and reconstructed (ab initio optimized) Si(lll) cluster 
(6-31G* basis set). 

5.11.3 Si(lll) Hydrogenation Energetics. Table 5.29 lists the Hartree-Fock en- 

ergetics for H atom adsorption onto the Si(lll) cluster. As was seen in the SiC cases, 

ontop adsorption of H atoms on Si(lll) causes minimal changes in cluster geometry, so 

these structures are not shown. The adsorption energy per H atom is also equal. The 

adsorption energy per H atom on the Si(lll) cluster is calculated to be 10 ^ smaller 

than the adsorption energy on the Si-terminated SiC surface. 

5.11.4 Si(lll) O-Si Ontop Site Adsorption: Structure. The structure of the 

Si(lll) cluster with an O atom adsorbed at an ontop site is shown in Figure 5.49.   A 
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Surface Model 

6-31G* Energy (H) 

ab initio 
MIMOMM 

3 Bilayer 

Reconstruction 
Bare 4ROHF -6370.850792 - 

Hydrogenation 
(H-Si)t ontop 
(H-Si)2 ontop 
(H-Si)3 ontop 

3ROHF 
2ROHF 
^HF 

-6371.850792 
6372.066296 
-6372.674192 

- 

Adsorption Energy Q) 

Hydrogenation 
Cluster + nH(g) 4ROHF 

3ROHF 
2ROHF 
^HF 

0.0 
-68.70 

-137.45 (-68.75) 
-206.26 (-68.81) 

0.0 
(H-Si)n=1 

(H-Si)n=a 

(H-Si)n=3 

Table 5.29    Hydrogenation energetics of silicon(lll) cluster.   As was seen for the SiC 
clusters, the gain in energy for the adsorption of each H atom is the same. 

comparison of this structure with the bare cluster is also listed. Minimal differences in the 

two structures are seen. 
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Si22H25 Si22H250 Si22H25 Si22H250 

Ab Initio Ab Initio ^46 Initio ^46 Initio 

Dist (Ä) 
1.702 

Angle (°) 
93.700 1 Oads Oads 1 2 

1 2 3.927 3.929 Oade  1 3 - 93.598 
2 3 3.927 3.929 Oads   1 8 - 110.739 
3 1 3.927 3.929 7 1 8 109.621 109.107 
1 9 4.564 4.568 8 2 9 109.621 109.530 
1 8 
1 7 

7 13 

2.371 
2.371 
2.392 

2.379 
2.379 
2.391 

9 3 7 109.621 109.533 
Torsion(°) 

-179.993 -179.841 5 11 4 10 
8 14 2.392 2.391 4 10 6 12 -179.993 -179.824 
9 15 2.392 2.393 10 11 12 14 0.035 0.070 

Figure 5.49 Comparison of ab initio (6-31G* basis set) optimized Si(lll) cluster geome- 
try, bare and with 1 O atom adsorbed at an ontop site. Ontop site adsorption 
causes small changes in cluster geometry. This adsorption site is an AMI 
saddle point. 
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5.11.5 Si(lll) Si-O-Si Bridge Site Adsorption: Structure. Bridge site adsorption 

of an 0 atom on the Si(lll) causes the same qualitative pattern of atom displacements 

as was seen in the two SiC(lll) surfaces. However, because of the weaker bonding in 

silicon, the atom displacements for the ab initio optimized structure are significantly larger 

(50%) than the corresponding displacements in the Si-terminated SiC(lll) surface. The 

displacements in the IMOMM optimized result are again considerably reduced. The largest 

reductions in displacements are observed along the z-axis, again confirming the importance 

of including layers below the embedded cluster in the bulk cluster. A comparison of the ab 

initio and MIMOMM (3bl) optimized geometries are shown in Figures 5.50 and 5.51. The 

atom displacements for these two cases are listed in Table 5.31, and the internal coordinates 

are listed in Table 5.30. 

Si-O-Si B ridge Site 

Si(lll) Surface 

Si22Ö25 Si22H250 S122H25O 

Ab Initio Ab Initio MIMOMM 
None None 3 Bilayer 

Dist (A) 
1.719 1.756 1 Oads 

2 Oads - 1.719 1.756 
1 2 3.926 2.713 2.801 
1 4 2.370 2.360 2.462 
1 8 2.371 2.363 2.306 

4 10 2.377 2.423 2.493 
5 11 2.377 2.423 2.493 
7 13 2.393 2.390 2.382 
8 14 2.393 2.303 2.263 

Angle (°) 
104.206 105.766 1 Oads 2 

Oads 1 4 - 133.809 143.855 
1 8 2 111.835 71.333 74.777 
4 1 8 110.073 100.234 100.226 
8 2 9 109.621 113.910 118.212 
9 3 7 109.621 100.071 101.875 

Torsion(°) 
0.035 21.570 11.292 10 11 12 14 

20 18 17 16 -1.288 -18.211 -6.749 

Table 5.30 Comparison of ab initio and MIMOMM optimized Si(lll) cluster geometry with 1 O 
atom adsorbed onto an bridge site. The bare cluster results are listed for comparison. 
6-31G* basis set used in all calculations. 
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Figure 5.50    Ab initio optimized 4ROHF (6-31G*) geometry of Si-O-Si bridge, Si(lll) 
surface. 

Figure 5.51    MIMOMM optimized 4ROHF (6-31G*/3BL) geometry of Si-O-Si bridge, 
Si(lll) surface. 
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Atom Displacements (Ä) Caused by 
Si-O-Si Bridge Adsorption Site 

Si(lll) Surface 
Atom Ab Initio IMOMM: 3 Bilayer 

6x Sy bz 6x 6y hi 

1 0.605 0.042 -0.160 0.562 0.031 -0.024 
2 -0.608 0.042 -0.158 -0.563 0.031 -0.020 
3 -0.001 0.209 -0.084 -0.001 0.127 0.021 
4 0.579 -0.125 0.466 0.360 0.016 0.337 
5 -0.582 -0.125 0.470 -0.362 0.014 0.340 
6 0.000 0.162 -0.208 0.001 0.111 0.007 
7 0.128 0.034 -0.083 0.115 0.011 -0.005 
8 0.000 -0.022 -0.906 0.001 -0.181 -0.559 
9 -0.130 0.033 -0.081 -0.116 0.010 -0.004 

10 0.214 -0.031 0.443 0.175 0.012 0.229 
11 -0.215 -0.032 0.448 -0.175 0.011 0.231 
12 0.000 0.018 -0.203 0.000 0.020 -0.010 
13 0.017 0.028 -0.076 0.079 -0.012 0.005 
14 0.001 0.094 -0.816 0.001 -0.025 -0.427 
15 -0.016 0.027 -0.074 -0.080 -0.012 0.007 
16 0.000 0.182 -0.331 0.000 0.022 -0.172 
17 -0.131 0.070 -0.259 -0.024 -0.064 -0.126 
18 0.041 -0.075 0.337 -0.067 -0.017 0.103 
19 -0.051 0.021 -0.091 0.007 -0.016 -0.004 
20 -0.040 -0.074 0.332 0.068 -0.017 0.100 
21 0.132 0.069 -0.256 0.024 -0.065 -0.125 
22 0.053 0.021 -0.089 -0.006 -0.016 -0.002 

Table 5.31 Atom displacements induced by an O atom Si-O-Si bridge adsorption site on the 
Si(lll) surface. The pattern of displacements is the same as on the SiC(lll) surfaces, 
but the displacements are larger. 
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5.11.6 Si(lll) Si-O-Si Ring Insertion: Structure. A comparison of the ab initio 

and MIMOMM (3 bilayer) optimized geometries of the Si-O-Si ring insertion site on the 

Si(lll) surface is listed in Table 5.32. The major structural change caused by the O atom 

insertion is the 0.8Ä increase in the atom 1-2 separation from the bare, reconstructed clus- 

ter. This has the effect of opening up the surface bilayer ring, which should make it easier 

for additional O atoms impinging on the surface to penetrate through the surface bilayer 

and react with subsurface atoms. Figures 5.52, 5.53, 5.54, and 5.55 show comparisons of 

the ab initio and MIMOMM (3 bilayer) optimized geometries of the Si-O-Si ring insertion 

site on the Si(lll) surface. As we've seen in previous cases, the MIMOMM optimization 

reduces the overall distortion of the cluster. 

Si-O-Si Ring Site 

Si(lll) Surface 

Si22H25 Si22H250 Si22H250 
Ab Initio Ab Initio MIMOMM 

4 Bilayer 
Dist (A) 

3.927 4.608 4.575 1 2 
1 4 2.370 2.371 2.367 
1 7 2.371 2.376 2.351 
1 9 4.453 4.952 4.855 

1 48 - 1.657 1.636 
8 48 - 1.651 1.638 

Angle (°) 
110.182 102.498 7 1 48 

1 48 8 - 152.602 157.098 
48 8 2 - 111.618 100.814 
82 9 109.621 110.931 109.170 
29 3 111.835 114.004 115.416 
9 3 7 109.621 113.982 116.147 
37 1 111.835 113.787 109.534 

Table 5.32 Comparison of ab initio and MIMOMM optimized (4ROHF 6-31G*) Si(lll) cluster 
geometry with an O atom adsorbed at a Si-O-Si ring insertion site. Atom 48 is the 
adsorbed O atom. The bare cluster results are listed for comparison. 
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Figure 5.52    Ab initio optimized 4ROHF (6-3lG*/3BL) geometry of Si-O-Si ring insertion, 
Si(lll) surface. 

Figure 5.53    IMOMM optimized 4ROHF (6-31G*/3BL) geometry of Si-O-Si ring inser- 
tion, Si(lll) surface. 
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Figure 5.54    Ab initio optimized 4ROHF (6-3lG*/3BL) geometry of Si-O-Si ring insertion, 
Si(lll) surface. 

Figure 5.55    IMOMM optimized 4ROHF (6-31G*/3BL) geometry of Si-O-Si ring inser- 
tion, Si(lll) surface. 
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5.11.7   Si(lll) O-Si-0-Si Ontop and Ring Insertion:  Structure. Figure 5.56 

shows the ab initio optimized geometry of the Si(lll) cluster with two O atoms adsorbed. 

This structure was obtained by starting with the optimized geometry of the Si(lll) cluster 

with one O atom adsorbed into a ring site (between atoms 1 and 8), and placing a second 0 

atom 1.6A above atom 1. This starting point was selected to bias the optimized geometry 

towards Si atom 1 being bonded to both O atoms because this configuration was found 

to be the lowest energy product state to 02 adsorption onto the Si(lll) surface (after 

dissociation of the molecular precursor) [128]. Unlike the single O atom adsorbed ontop 

Si(lll), this configuration had an AMI Hessian free of imaginary frequencies. As was 

mentioned earlier, this configuration is a likely early step in the formation of an Si02 layer 

on Si(lll). A comparison of the geometry of the bare cluster, the cluster with one O atom 

adsorbed in a ring site, and the cluster with two O atoms adsorbed is listed in Table 5.33. 

Si22H25 Dl-\Jfifig-Ol {sontop^l ^ring ^1 
Ab Initio Ab Initio Ab Initio 

Dist (Ä) 
-*• {Jontop - - 1.680 

J- ^ring - 1.598 1.640 
1 4 2.367 2.366 2.366 
1 7 2.371 2.333 2.372 

Ö \Jring - 1.710 1.652 
2 8 2.371 2.354 2.362 
37 2.371 2.404 2.376 

Angle (°) 
. _ 111.068 ^ontop" *-~{sring 

^o«iop~J-~4 - - 107.932 
{Jontop~*-~* - - 106.264 
J-~*-Vin<j~° - 147.508 156.315 

^rinf""^ - 112.306 111.630 
2-9-3 111.835 112.551 114.174 
3-7-1 111.835 116.256 114.094 

'"^"nnj - 118.379 109.234 

Table 5.33     Comparison of Si(lll) cluster ab initio optimized geometry (6-31G*) with 0, 1, and 
2 O atoms adsorbed. 
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Figure 5.56    Ab initio optimized 4ROHF (6-31G*) geometry of Si(lll) cluster with two 
O atoms adsorbed, Oon4opSi-Orinj-Si. 
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5.11.8 Comparison of Si(l 11) Oxygen Adsorption Site Energetics. The oxidation 

energetics for Si(lll) are summarized in Table 5.34, and we that the overall behavior of 

one 0 atom adsorbed on a Si(lll) surface is actually quite different than the Si-terminated 

SiC(lll) surface. The ontop adsorption energy on Si(lll) is predicted to be 16^ smaller 

than on Si-terminated SiC(lll). As expected, the Si-O-Si bridge adsorption site is less 

bound on Si(lll) than on Si-terminated SiC(lll), and is significantly affected by addition 

of sterics from the bulk cluster in the MIMOMM optimization. Unlike the Si-terminated 

SiC(lll) cluster, the ring adsorption site in Si(lll) is the lowest energy adsorption site. 

The total binding energy of 2 O atoms adsorbed, one in a ring insertion site, one ontop, is 

12 ^~ larger than the sum of the individual ontop and ring adsorption sites. 

The O atom ontop adsorption site on Si(lll) is of particular interest because of all the 

O atom adsorption sites reported in this work, only the AMI Hessian at this adsorption site 

contained imaginary frequencies, i.e., this is not an AMI stationary point. (All the ab initio 

optimizations performed in this work were preceded by AMI optimizations and Hessian 

calculations.) However, the AMI Hessian for the O ontop site with an O atom already 

adsorbed at a ring insertion site did not contain any imaginary frequencies. Adsorption 

of 02 onto the Si(lll) surface is believed to occur via a molecular precursor. Schubert et 

al [127, 128] report extended Huckel tight binding calculations of 02 adsorption on Si(lll). 

The lowest energy final state they report involves adsorption of an 02 molecule at an ontop 

site, followed by dissociation with 1 O atom moving into a ring adsorption site and the 

other O atom remaining ontop. They speculate that repetition of this mechanism results 

in the formation of an Si02 layer ontop the silicon. For reactions involving atomic oxygen, 

our calculations predict that the atomic oxygen first burrows into the subsurface before 

adsorbing at ontop sites. The larger spacing of the Si(lll) lattice is a likely reason why 

the ring insertion site is preferred over an ontop site for a single O atom. 

5.11.9 Si Vacancy in the Si(lll) Surface. The reconstruction induced by a 

surface vacancy in the Si(lll) surface was modeled by removing Si atom 1 and optimizing 

the cluster geometry, the same procedure that was used for the SiC clusters. Table 5.35 

lists the energetics of Si vacancy creation in the Si(lll) cluster. 

5-84 



Surface Model 

6-31G* Energy (H) 

ab initio 
MIMOMM 
3 Bilayer 

Bare 4ROHF -6370.850792 - 
Oxidation 

O-Si ontop 
Si-O-Si bridge 
Si-O-Si ring 
Oonjop'^i'Orinp-ol 

4ROHF 
2ROHF 
4ROHF 
4ROHF 

-6445.722146 
-6445.761154 
-6445.777182 
-6520.667840 

AMI saddle pt 
-6445.737058 
-6445.770469 

Adsorption Energy (g) 

Oxidation 
Cluster + O(g) 

4ROHF 
2ROHF 
4ROHF 

0.0 
-58.0 
-82.4 
-92.5 

0.0 

-67.3 
-88.3 

O-Si ontop 
Si-O-Si bridge 
Si-O-Si ring 

Cluster + 20(g) 
4ROHF 

0.0 
-162.6 

0.0 

0ontop-ol-Url>,j-bl 

Table 5.34 Oxidation energetics of Si(lll) cluster. All the ab initio calculations were 
preceded with AMI optimization and Hessian calculations to start the 6- 
31G* optimizations. The O-Si ontop adsorption site is the only site reported 
in this work that did not optimize to an AMI minimum. 

Because the silicon lattice isn't as stiff as SiC, we expect to see very large atom 

displacements upon reconstruction around the vacancy, and we expect the steric influence 

of the bulk cluster to be more important than in the SiC clusters. Figures 5.57 and 5.58 

show a comparison of ab initio optimized geometries (4ROHF 6-31G*) of the bare cluster 

and this same cluster with Si atom 1 removed. In this case, atoms 4 and 8 have bonded, 

with atom 4 dragging atom 10 along with it. Figures 5.59 and 5.60 show a comparison 

of the bare cluster and the MIMOMM optimized cluster with a vacancy. In MIMOMM 

optimized case, the steric forces on atom 10 make bonding between atom 4 and 8 less 

favorable, and we see that atoms 4 and 7 have now bonded around the vacancy. Unlike the 

SiC(11) Si and C vacancy calculation, in Si(lll) the ab initio and MIMOMM optimized 

geometries display qualitatively different reconstructions. A comparison of the ab initio 

and MIMOMM optimized geometries for the vacancy induced reconstruction is shown in 

Figures 5.61 and 5.62. The atom displacements for these cases are listed in Table 5.37. 
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Figure 5.57   Ab initio optimized 4ROHF (6-31G*) geometry of Si(lll) cluster. 

Figure 5.58    Ab initio optimized 4ROHF (6-31G*) geometry of Si(lll) cluster with a 
surface vacancy. Distortion of cluster much larger than in SiC 
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Figure 5.59    Ab initio optimized 4ROHF (6-31G*) geometry of Si(lll) cluster. 

Figure 5.60    MIMOMM optimized 4ROHF (6-31G*) geometry of Si(lll) cluster with a 
surface vacancy. Distortion of cluster much larger than in SiC 
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Figure 5.61 Ab initio optimized 4ROHF (6-31G*) geometry of Si(lll) cluster with a 
surface vacancy. Atoms 4 and 8 have bonded in the reconstruction following 
creation of the vacancy. 

Figure 5.62 MIMOMM optimized 4ROHF (6-31G*) geometry of Si(lll) cluster with a 
surface vacancy. Atoms 4 and 7 have bonded in the reconstruction following 
creation of the vacancy. 



Surface Model 

6-31G* Energy (H) 

ab initio 
MIMOMM 

3 Bilayer 
Reconstruction 

Bare 4ROHF -6370.850792 - 

Si Vacancy 
S121H25 

4ROHF -6081.888239 -6081.870402 

A Energy (^f) 
Si Vacancy    4ROHF +83.6                +94.8 

Table 5.35    Si(lll) surface vacancy energetics 

Atom Displacements (A) Caused by 
Si Surface Vacancy 

Si(lll) Surface 
Atom Ab Initio IMOMM: 3 Bilayer 

Sx 6y <5z <5x Sy 6z 
1 
2 -0.648 -0.159 -0.040 0.151 -0.042 0.038 
3 -0.151 0.187 0.009 -0.253 -0.368 -0.042 
4 1.260 -0.400 -0.030 0.383 0.825 0.021 
5 -0.537 -0.117 0.212 0.133 -0.040 -0.010 
6 0.020 0.119 -0.154 -0.148 -0.278 0.031 
7 -0.250 0.436 -0.011 -0.381 -0.279 -0.116 
8 -0.291 -0.423 -0.406 0.218 -0.058 0.006 
9 -0.346 -0.123 0.082 -0.074 -0.084 0.002 

10 0.241 -0.177 0.205 0.097 0.239 0.065 
11 -0.141 -0.052 0.240 0.026 -0.015 -0.028 
12 -0.082 -0.052 -0.148 -0.042 -0.095 0.014 
13 -0.104 -0.030 0.038 -0.041 -0.011 -0.077 
14 -0.049 -0.078 -0.365 0.050 0.053 0.032 
15 -0.121 -0.054 0.098 -0.049 -0.054 0.004 
16 -0.096 0.001 -0.027 -0.030 -0.001 -0.058 
17 -0.060 0.037 -0.470 0.032 0.097 0.064 
18 -0.042 -0.037 0.299 -0.028 -0.004 -0.028 
19 -0.075 -0.095 -0.132 -0.043 -0.021 -0.077 
20 -0.121 -0.157 0.335 -0.056 0.132 -0.148 
21. 0.056 0.039 -0.216 -0.000 -0.005 -0.008 
22 -0.047 -0.086 0.016 -0.016 -0.062 -0.003 

Table 5.36 Atom displacements induced by a Si vacancy on the Si(lll) surface. As was seen 
in the SiC clusters, the MIMOMM optimized z axis displacements are significantly 
smaller than the ab initio result. Unlike the SiC cases, the ab initio and MIMOMM 
reconstruction are also qualitatively different. 
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Si22H25 Si2lH25 Si2lH25 
No Vacancy Ab Initio MIMOMM 

3 Bilayer 

Dist (A) 
6.026 4.259 5.700 24 

28 2.371 2.382 2.334 
47 3.908 4.237 2.575 
48 3.908 2.385 3.842 

4 10 2.378 2.384 2.423 
Angle (°) 

146.295 118.500 139.338 473 
48 2 146.293 126.601 133.187 
73 9 109.621 108.081 119.421 
82 9 109.621 120.532 104.757 

7 13 12 90.028 84.870 98.407 
17 10 20 108.953 106.776 112.265 

Torsion(°) 
-0.035 -10.231 -2.051 10 13 15 14 

17 20 22 21 0.001 8.295 -2.415 

Table 5.37     Comparison of ab initio and MIMOMM optimized (6-31G* basis set) geometries of 
Si(lll) cluster with a Si surface vacancy. 
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5.12   Discussion 

5.12.1 Steric Effects on O Atom Bridge Site Formation. Of the three adsorption 

sites investigated, formation of the Si-O-Si bridge site is predicted to be the lowest energy 

adsorption site on the Si-terminated SiC(lll) surface. However, the C-O-C terminated 

bridge site on the C-terminated surface is predicted to be weakly bound by the ab initio 

calculation, and even higher in energy than the EC plus a free O atom by the MIMOMM 

(4 bilayer) calculation. This result may seem odd at first, but can be readily understood 

by considering the steric constraints of the SiC lattice. 

One way to understand the steric effects on reactivity is to compare the cluster 

calculations with a similar small molecule that does not have the same steric constraints. 

H3Si-0-SiH3, shown in Figure 5.63, can be used to make comparisons to the O ontop and 

bridge sites on the Si-terminated clusters. Two SiHJs and an O atom would be comparable 

to the Si-terminated cluster with an unbonded 0 atom. SiH30* and SiHJ correspond to an 

O atom adsorbed at an ontop site, and SiH3OSiH3 corresponds to an O atom adsorbed at a 

bridge site. Table 5.38 lists the calculated (6-31G*) Si-0 binding energies for these systems, 

as well as the optimized Si-0 bond lengths and Si-O-Si bond angle.. The experimental 

bond strength for an Si-0 bond in HO-Si(CH3)3 is also listed to bound these Hartree-Fock 

results. The corresponding results from the Si-terminated cluster calculations are listed in 

Table 5.39. 

In Table 5.39, we see that the most striking structural difference between the cluster 

results and H3SiOSiH3 is in the value of the Si-O-Si bond angle. Table 5.40 lists the angles 

around the O-Si bond for H3SiOSiH3, and the ontop and Si-O-Si bridge adsorption sites on 

the Si-terminated cluster. In H3SiOSiH3, the H atoms bonded to the Si are free to move, 

and so can achieve a nearly tetrahedral geometry around Si for any value of Si-O-Si angle, 

i.e., the Si-O-Si bond angle and Si-0 bond distance are free to optimize fully. In the O-Si 

ontop site adsorption, the structure around Si is nearly tetrahedral, so little distortion of 

the cluster is required to achieve an optimum geometry. However, in the Si-O-Si bridge 

formation, the Si atoms are bonded to C atoms in the EC, and are coupled into the entire 

cluster. In order to achieve a tetrahedral geometry around the Si atom, the subsurface 

C atoms would have to be pulled out of the lattice. There isn't enough energy in the O 
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Figure 5.63    Optimized geometry of H3Si-0-SiH3, a small molecule model of an Si-O-Si 0 atom 
bridge adsorption site. 

adsorption reaction to do this, though there is enough energy to cause significant distortion 

in the EC. Two Si-0 bonds form, but at a far from optimum geometry, so the bonding 

energy of the Si-O-Si bridge site is much less than twice the O-Si ontop site bonding energy. 

The better representation of the bulk steric forces provided by MIMOMM further restrict 

the displacement of the C atoms, reducing the bonding energy of the Si-O-Si bridge site. 

These same steric constraints on 0 atom bridge site formation can also be observed 

on the C-terminated SiC(lll) cluster. For this case, the analogous small molecule model 

system is H3C-0-CH3. The comparisons listed in Tables 5.41, 5.42, and 5.43 shows that the 

steric constraints of the C-terminated cluster result in the formation of C-0 bonds at less 

than optimal geometries, which reduces the binding energy. However, an additional effect 

on the C-terminated SiC(lll) surface also plays a role in bridge bond formation: atomic 

size. The C-C bond length in diamond is 1.54Ä. In bulk silicon, the Si-Si bond length is 

2.35Ä. In SiC, the Si-C bond length is 1.891. On the Si-terminated SiC surface, Si atoms 

1 and 3 that form the bridge bond with the 0 atom are 3.ll apart in the SiC lattice, 18% 

closer together than the separation of 3.841 on a Si(lll) surface. On the C-terminated 

SiC surface, C atoms 1 and 3 are also 3.ll apart, 23% farther apart than the separation 
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System 

AE(^) 

Si-0 (1) ZSi-0-Si° HF MP2 
sm3 + smi + 0* 

H3SiO* + SiH3 

H3SiOSiH3 

0.0 
-67.94 

-167.70 

0.0 
-96.9 

-224.5 
1.688 
1.631 153.4 

HO-Si(CH3)3 bond energy 128.0 exp Ref [125] 

Table 5.38    Small molecule models for Si-0 bond energies (6-31G* basis set). 

Adsorption Site 

AEO 
Si-0 A ZSi-0-Si° HF MP2 

Ontop -74.5 -104.0 1.698 - 
Bridge 
ab initio 
MIMOMM 2 Bl 
MIMOMM 4 Bl 

-106.8 
-102.3 
-92.5 

-174.5 
-170.1 
-163.8 

1.727 
1.754 
1.767 

90.8 
92.3 
92.3 

Table 5.39    Si-0 bond energies in SiC cluster models (6-31G* basis set). 

of 2.62Ä on the diamond (C(lll)) surface, which makes bonding that involves cooperation 

of more than one surface C atom more difficult. This difference in oxidation adsorption 

between the Si and C-terminated SiC(lll) surfaces caused by this size difference can be 

better understood by examining the Boys localized singly occupied orbitals on the bare Si 

and C-terminated clusters, shown in Figure 5.64. In this figure, we see that the spatial 

extent of the C dangling bond is much smaller that the Si dangling bond. An O atom 

moving towards the surface has a much higher probability of interacting with 2 adjacent 

H3SiOSiH3 

zsiro-Si3(°) 
ZO-SirH4 

ZO-Sij-Hg 
ZO-Sij-H6 

153.373 
108.923 
110.234 
110.234 

Si-terminated SiC(lll) Cluster 

ZSii-O-SisC) 
zo-Si!-c4 
zo-Si!-c7 
ZO-Sh-Cg 

O Ontop 

103.762 
111.800 
111.663 

O Bridge 
92.304 

142.883 
103.356 
83.083 

Table 5.40 Comparison of bond angles in H3SiOSiH3 with O atom ontop and bridge 
adsorption sites on the Si-terminated SiC(lll) surface. Atom numbers for 
H3SiOSiH3 are shown in Figure 5.63. Atom numbers for the Si-terminated 

SiC(lll) cluster are shown in Figure 5.24. 
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Si atoms on the Si-terminated SiC surface than 2 adjacent C atoms on the C-terminated 

SiC surface. Formation of a bridge bond essentially passivates two surface reactive sites, 

while formation of an ontop adsorption site produces a new radical site above the surface. 

This is a possible reason why O atom exposure of the Si-terminated SiC surface leads to 

growth of a good insulating layer, and why the O atom exposure of the C-terminated SiC 

surface results in formation of a poorer insulating layer. 

System 
V mol / 

C-0 (A) ZC-O-C0 HF MP2 
CH3 + CH* + 0* 

H3CO' + CH3 

H3COCH3 

0.0 
-51.7 

-110.6 

0.0 
-86.4 

-179.4 
1.384 
1.391 113.8 

H3C-OC(CH3)CJff2 bond energy 66.3 (Exp) Ref [125] 

Table 5.41    Small molecule models for C-0 bond energies (6-31G* basis set). 

Adsorption Site 

AE&) 

C-0 A ZC-O-C0 HF MP2 
Ontop -40.8 -84.5 1.396 - 
Bridge 
ab initio 
IMOMM 2 Bl 
IMOMM 4 Bl 

-9.6 
-1.7 

+5.8 

-101.1 
-94.9 
-88.8 

1.505 
1.568 
1.590 

100.641 
102.163 
102.233 

Table 5.42    C-0 bond energies in SiC cluster models (6-31G* basis set). 

H3COCH3 
ZCi-O-CaH 

ZO-C!-H4 

ZO-C!-H5 

ZO-Ci-He 

113.811 
107.648 
111.487 
111.489 

C-terminated SiC(lll) Cluster 

Ci-O-CsH 
0-Ci-Si4 

0-CrSi7 

0-CrSi8 

O Ontop 

106.846 
109.636 
109.634 

O Bridge 
102.227 
138.550 
110.367 
74.172 

Table 5.43 Comparison of bond angles in H3COCH3 with O atom ontop and bridge 
adsorption sites on the C-terminated SiC(lll) surface. Atoms numbers 
for H3COCH3 are consistent with Figure 5.63. Atoms numbers for the C- 
terminated SiC(lll) cluster are shown in Figure 5.34. 
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Figure 5.64 Boys localized singly occupied molecular orbitals for Si and C-terminated 
SiC(lll) surfaces. Subsurface atom locations are accurate only for the Si- 
terminated surface 

5.12.2 Etching of the C-terminated SiC(lll) Surface. Observed differences in 

the performance of SiC devices have been attributed to differences between the oxidation 

of Si and C-terminated surfaces. O atoms are assumed to etch the C-terminated surface, 

producing defects at the semiconductor-insulator interface that increase the resistivity 

near the interface. Direct experimental evidence for carbon etching by oxygen does not 

yet exist. From the oxygen adsorption results in Section 5.9, one possible mechanism for 

carbon etching is adsorption at an ontop site, followed by formation of CO (gas) along with 
4ROHF reconstruction of the remaining cluster. The Hartree-Fock and MP2 energetics for 

this mechanism are: 
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(C9Si13H25)0 —>       CgSli3H25 + CO 
CO -»■    C + 0 

(C9Si13H25)0 —»       C8SI13H25 + CO 
CO ->   c + 0 

ab initio     MIMOMM 
4 Bilayer 

Hartree-Fock AE (££) 
+11.7 +22.4 

177.0 

MP2 AE (-^f) 
+16.5 +21.2 

254.4 

CO (2ROHF)    -+    C (3ROHF)    +    O (3ROHF)      257 (Exp) Ref [125] 

The inclusion of electron correlation makes a large difference in the calculated binding 

energies; however, the Hartree-Fock and MP2 energetics of CO elimination differ by only 

about 6-^r*-.   These calculations if reactant and product state energies do not consider 
mole x <J 

the effect of thermal vibrations of the cluster on CO elimination, nor do they consider 

the entropic gain of reelasing a gas phase molecule. However, since the binding energy of 

O atom ring insertion is greater than O atom ontop site adsorption for the C-terminated 

SiC(lll) cluster, direct elimination of CO is unlikely. 

An alternate mechanism for etching of C atoms from the C-terminated surface would 

begin with O atom C-O-Si ring insertion, followed by subsequent ontop adsorption of a 

second O atom on the C atom involved in the C-O-Si ring bond. The second step is followed 

by desorption of a C02 molecule. The binding energy of C02 is very large, 384 ^, and 

the distortion caused by the initial O atom ring insertion is likely to weaken the C atom 

binding to SiC. The energetics for this mechanism are listed in Table 5.44. (The MP2 

calculated binding energy for C02 listed here does not include a correction for zero point 

vibration energy.) We see that at the MP2 level of theory, the energy of 2 O atoms 

adsorbed onto the cluster is only 7 £^ lower in energy than the cluster with a C atoms 

vacancy and a C02 molecule. This result does not include the entropic gain associated with 

desorbing a molecule from a surface. Since the insertion of the O atom into the surface 

ring on the C-terminated SiC(lll) surface is energetically favored, a plausible mechanism 

for C02 elimination is adsorption of an O atom at this site, adsorption of a second O atom 

onto a surface C atom adjacent to the first O atom. While this is a plausible mechanism, 

the calculations performed do not provide any information about barriers to this reaction 

mechanism. 
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ab initio 
Hartree-Fock AE (££) 

(C9Si13H25)02    - -*       C8SI13H25 + C02 +6.9 
co2 -►   c + 20 250.0 

MP2 AE (±*f) 

(C9Si13H25)2 -*     C8S113H25 + C02 +6.8 
co2 -+    C + 20 382.6 

C02 -»■    C +20 384 (Exp) Ref [125] 

Table 5.44   Energetics of C02 desorption from C-terminated SiC(lll) cluster. 

5.13 Summary of Oxidation Energetics 

Table 5.45 lists the MP2 oxidation energetics for the Si and C-terminated SiC clusters 

and the Hartree-Fock energetics for the Si(lll) cluster. 

5.14 Conclusions 

Our interest in oxidation of SiC(lll) was spurred by the experimental observation of 

widely differing device SiC MOSFET device performance. The hypothesized reason for this 

observed difference is that SiC comes in two varieties, with silicon or carbon terminated 

surfaces. Oxidation of the Si-terminated surface is believed to lead to a defect-free interface 

between the oxide layer and the SiC underneath. Oxidation of the C-terminated surface 

is believed to etch carbon from the surface, producing a defect-rich interface. From the 

calculations presented in this chapter, we can conclude: 

• Etching of C by O atom adsorption is energetically reasonable 

- Etching by elimination of C02 is more likely than by elimination of CO 

- Atom displacements after removal of a surface C from SiC are much larger than 

after removal of a surface Si atom. The effect of these displacements propagates 

many layers into the SiC below the interface 
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• The relative energetics of the single O atom adsorption sites investigated in this work 

on the C-terminated SiC(lll) surface is the same Si(lll) surface, while both differ 

from the Si-terminated SiC(lll) surface. 

• Imposing bulk steric effects on small clusters is more important when modeling pro- 

cesses that cause large atom displacements. 

• Fabrication processes developed for silicon devices, such as growing insulating layers 

by exposure to atomic oxygen, may be inappropriate for SiC devices. 

5.15   Recommendations 

5.15.1 SiC Oxidation. The O atom adsorption calculations provide some in- 

sight into the observed differences in the oxidation of Si and C-terminated SiC surfaces. 

Oxidation of SiC is currently performed using "wet" chemistry, exposure to steam, or 

"dry" chemistry, exposure to O atoms in Plasma Enhanced Chemical Vapor Deposition 

(PECVD). The gas used in the PECVD process is a mixture of oxygen diluted in a rare 

gas buffer. The goal of this oxidation is to grow an insulating layer of Si02 on the SiC 

surface, and there's more than one way to grow Si02 layers. An approach commonly used 

to grow Si02 layers on silicon is PECVD using a gas mix of tetraethoxysilane (TEOS 

Si(OC2H5)4) and 02 [132]. Since the O atoms are responsible for etching the C atoms 

on the C-terminated surface, using TEOS/02 would provide a flux dissociation products 

containing Si-0 instead of just 0 atoms (and other pure oxygen products). The Si-0 con- 

taining TEOS dissociation products should bind to the surface C atoms, instead of etching 

off the C and producing surface defects. 

5.15.2 MIMOMM. Optimum BC design is highly system dependent so it is 

difficult to specify a set of rules for designing BCs a priori. If clear guidance on the design 

of the BC isn't intuitively obvious, perform a conventional ab initio calculation on the EC. 

The observed deformations of the EC should provide reliable guidance for the BC design. 

The use of MM3 interaction potentials raises some questions about the IMOMM 

results on SiC that are unanswered. First, the MM3 interaction potentials are similar to 

the equivalent 6-31G* potentials, but they different. It is unclear how this difference affects 
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the MIMOMM optimized results. The only way to guarantee consistency of the potentials 

is for the user to generate his own set of potentials based on ab initio results (using the same 

basis set to be used in the subsequent MIMOMM calculations). Methods for generating a 

set of MM potentials based on ab initio calculations exist, but are beyond the experience 

of the average user [96]. Second, the MM3 interaction potentials were parameterized 

using gas phase experimental data. Potentials parameterized against solid state material 

properties are more appropriate for reproducing the steric environment of bulk Si and 

SiC. Again, generating a set of parameters is beyond the experience of the average user. 

An easier approach is to use an MM code (other than MM3) that includes a number of 

different parameter sets (e.g. AMBER, CHARMM), and to select the parameterization 

most appropriate for the specific model system. 
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0 Atom Adsorption Energies (~) 

Ab Initio MIMOMM 
2 Bilayer 

MIMOMM 
4 Bilayer 

Si-terminated Si9C13H25                            MP2 / HF 
Cluster + 0(g) 
O-Si ontop 
Si-O-Si bridge 
Si-O-C ring 

0.0 
-104.0/  -74.5 
-174.5 / -106.8 
-95.1 /  -50.6 

0.0 
-103.8 /  -74.5 
-170.1 / -102.3 

0.0 

-163.8 /  -92.5 
-89.3/  -45.0 

Cluster + 20(g) 
^ ontop~ ^1" ^ring ~ ^ 

0.0 
-203.5 / -129.6 

0.0 0.0 

C-terminated C9Sii3H25 MP2 /HF 
Cluster + O(g) 0.0 0.0 0.0 
O-C ontop -84.5 /  -40.8 -84.4 /  -40.8 - 

C-O-C bridge -101.1 /   -9.6 -94.9 /    -1.7 -88.8 /    +5.8 
C-O-Si ring -106.9 /  -58.1 - -101.0 /  -52.2 

Cluster + 20(g) 0.0 0.0 0.0 
'-' ontop' ^-/~ ^ring ~ 01 -202.7 / -109.0 - - 

Ab Initio MIMOMM 
3 Bilayer 

Silicon Si22H25                                               f F 
Cluster + O(g) 
Si-0 ontop 
Si-O-Si bridge 
Si-O-Si ring 

0.0 
-50.0 
-82.4 
-92.5 

0.0 

-67.8 
-88.3 

Cluster + 20(g) 0.0 
-162.6 

0.0 

Table 5.45 Summary of O atom adsorption energies on SiC(lll) and Si(lll). The MIMOMM 
3 bilayer results for silicon are listed in the same column as the MIMOMM 4 bilayer 
results for SiC because both of these bulk clusters provide steric constraints on the 
bottom of the embedded cluster, unlike the 2 bilayer bulk cluster. 

5-100 



VI.   Conclusions and Recommendations 

6.1    Summary 

A new hybrid quantum mechanics/molecular mechanics (QM/MM) calculation method 

for modeling surface chemistry was developed and applied to the study of silicon and silicon 

carbide surfaces in this work. This method, known as the Modified Integrated Molecular 

Orbital and Molecular Mechanics (MIMOMM), was based on the IMOMM method de- 

veloped by Maseras and Morokuma [4]. The delocalized coordinates of Baker [10] were 

implemented and shown to be very useful for the highly coupled molecular clusters typ- 

ically required for modeling surfaces. MIMOMM was verified on silicon clusters used to 

model the dimerization of the Si(001) surface by comparison with a conventional ab initio 

optimization of a large silicon cluster, Si66H52, with experiment, and with other published 

model calculations. As a model of a single silicon surface dimer, the small cluster Si9H12 

was found to reproduce experimental dimer separation, as well as subsurface atom dis- 

placements from the large cluster model. 

The use of Us to terminate silicon was investigated using the HW ECP and 6-31G* 

basis sets. While reported modification of Mulliken charges in Si9Hi2 were reproduced, the 

limitations of using Mulliken charge as a metric for defining Hs become apparent when 

one moves to a larger basis set such as 6-31G*. The limitation of the Mulliken population 

analysis for highly polarized materials such as SiC highlights the difficulty of using Mulliken 

charge for the construction of Hs. 

Studies of the surface chemistry of Si and C-terminated SiC(lll) surfaces using con- 

ventional ab initio techniques and MIMOMM displayed the importance of including bulk 

subsurface mechanical effects in modeling "surface" chemistry. O atom adsorption at on- 

top sites (O bonded to one surface atom), bridge sites (0 bonded to two adjacent surface 

atoms), and ring sites (O bonded to one surface atom and and adjacent subsurface atoms) 

was investigated. Differences in the relative adsorption energies of O atoms at these ad- 

sorption sites on the Si and C-terminated SiC(lll) surfaces were calculated, and attributed 

to the difference in lattice spacing for cubic Si, SiC, and cubic C (diamond) crystals. Ad- 

jacent Si atoms on the Si-terminated SiC(lll) are 20% closer together than on the Si(lll) 
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surface, which favors formation above-surface Si-O-Si bridges. Adjacent C atoms on the 

C-terminated SiC(lll) surface are 20% farther apart than on the C(lll) surface, which 

hinders formation of above surface C-O-C adsorption sites. The relative energetics of 0 

atoms on the Si(lll) surface was found to behave more like the C-terminated SiC(lll) 

surface than the Si-terminated SiC(lll) surface. 

6.2    Conclusions 

Although it was previously supposed that small molecular clusters would be unable to 

provide an acceptable representation of the surface of a bulk material in modeling chemical 

reactions, in several cases investigated in this research, small cluster models were found to 

work quite well by using MIMOMM. In surface reconstruction, the conventional ab initio 

and MIMOMM optimized geometries of Si9Hi2 and the Si and C-terminated SiC(lll) 

embedded cluster proved nearly identical. These clusters, while small, are large enough 

to represent enough of the bulk steric effects to produce a bulk-like surface structure (the 

MIMOMM result). All clusters three are the smallest closed-cage structures one can design 

for the portion of the surface being modeled. In the absence of any external (MIMOMM) 

or arbitrarily imposed (fixing atom positions) boundary conditions, a closed cage structure 

is necessary for accurate modeling of surface reconstruction. 

The predictions of optimized geometries of 0 atoms adsorbed on SiC(lll) clusters 

highlighted the problems involved with using small clusters to simulate the behavior of 

bulk materials. In general, O atom adsorption caused significant distortion of SiC cluster 

geometry, with MIMOMM optimized results giving a better representation of bulk be- 

havior. The exception to this trend was O atom adsorption at ontop sites on the Si and 

C-terminated SiC(lll) surface, where the conventional ab initio and MIMOMM optimized 

geometries were virtually identical. (Similar small differences between the conventional ab 

initio and MIMOMM optimized geometries were also observed for H atom ontop adsorp- 

tion on SiC.) For O atoms at ontop sites, the distortion to the cluster structure caused by 

the adsorption was minimal. While we are unable to simulate reaction dynamics using MI- 

MOMM, one can conclude that the lack of distortion caused by these adsorptions implies 

that barriers to these reactions are probably non-existent. On the Si-terminated SiC(lll) 
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surface, the sticking probability for an 0 atom at an ontop site may be larger than for 

a bridge site because of the small atomic displacements that are required for an ontop 

site to form, even though the binding energy at the bridge site is so much larger (-104^ 

ontop versus -164^ bridge), but this cannot be verified with MIMOMM. Unfortunately, 

because we cannot estimate the barrier heights for these two migration paths, we cannot 

determine whether bridge site formation or ring insertion is more probable. However, the 

adsorption energy at the bridge site is much larger than the ring or ontop site (-164^ 

bridge, -104^f ontop, -90^j ring), so if bridge adsorption sites form, they should be 

very stable. Experimentally, one should be able to verify the existence or non-existence 

of bridge adsorption sites on real Si-terminated SiC(lll) surfaces. Formation of O atoms 

bridge adsorption sites could passivate the Si-terminated surface, which may contribute to 

the hypothesized stability of insulating layers grown on Si-terminated SiC surfaces. 

O atom adsorption at ontop sites on the C-terminated surface should also have a 

higher sticking probability than bridge adsorption sites based on considerations of cluster 

distortion. In addition, the adsorption energy at ontop and bridge sites on the C-terminated 

surface are quite close (-84^ ontop versus -89^ bridge site) when the bulk steric ef- 

fects in the MIMOMM optimization are included. While we have no information about 

migration barriers, the adsorption energy of the subsurface ring site is significantly larger 

than either the ontop or bridge sites (-101^ ring site, -89^ bridge, and -84^ ontop). 

Thus it seems likely that initial O atom adsorption at an ontop site would be followed by 

migration subsurface. This migration will lead to a likely precursor for C atom etching 

by C02 elimination, as was discussed in Chapter 5. O atom exposure is unlikely to lead 

to passivation of the C-terminated SiC(lll) surface. Experimentally, one should be able 

to determine if O atoms are adsorbed preferentially subsurface at low O atom exposures. 

As the O atom exposure is increased, one should be able to measure CO or C02 being 

desorbed from the surface. 

Overall, the use of MIMOMM was demonstrated to enable the study of surface 

chemistry using physically realistic model systems while requiring practical computation 

times. A single ab initio geometry optimization on a four bilayer SiC cluster is estimated 

to take more than a full year running on 32 nodes of an IBM SP2 supercomputer.  The 
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equivalent hybrid cluster optimized with MIMOMM required only 24 hours on 32 IBM 

SP2 nodes. 

6.3   Recommended Future Work 

Although the basis MIMOMM approach was developed, validated, and applied, fur- 

ther code development, as well as Si and SiC surface chemistry studies are suggested. 

6.3.1 Code development. MIMOMM should be implemented using GAMESS and 

Tinker so that this technique can be made available to the scientific community. Tinker 

has the ability to use a number of different MM potentials, including user determined 

potentials. MM potentials are parameterized to reproduce some set of experimental data, 

so no matter what MM potentials are used, there will always be some mismatch between 

the MM potentials and the equivalent ab initio potentials. It would be useful to develop 

a process for inputting ab initio based potentials into Tinker for use with MIMOMM 

to eliminate this mismatch. A hybrid QM/MM Hessian calculation needs to be added 

to the current implementation of MIMOMM to enable the location of transition states 

and prediction of vibrational frequencies for comparison with spectroscopy. The use of 

consistent MM potentials consistent with the ab initio calculation is likely to be more 

important for hybrid Hessian calculations and vibrational analyses. The sensitivity of a 

MIMOMM result as a function of MM potential used should be determined, and used to 

provide guidance for choice of optimum MM potential for various applications. 

The implementation of delocalized coordinates in GAMESS needs to completed. The 

ability to freeze selected primitive internal coordinates is needed to enable the calculation 

of reaction barriers. Delocalized coordinates are required for surface cluster calculation 

using MIMOMM. However, use of delocalized coordinates results in significant time (and 

frustration) savings to the user in specifying a set of good coordinates. Delocalized co- 

ordinates would be quite useful for many types of calculations, such as determination of 

energy barriers, reaction coordinates, in addition to MIMOMM. 
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6.3.2 Silicon and SiC surface chemistry models. O atom adsorption reactions 

were investigated because growth of silicon dioxide insulating layers by exposure to O 

atoms is one of the primary processes currently being used in the fabrication of silicon and 

SiC semiconductor devices. Silicon dioxide layers are also grown by exposure to molecular 

oxygen, and some semi-empirical and DFT theoretical modeling of the adsorption of 02 

on Si(lll) has been reported in the literature. It would be very interesting to investigate 

02 adsorption on Si and C-terminated SiC(lll) and Si(lll) surfaces using MIMOMM. 

02 adsorbed at ontop sites is a likely molecular precursor to surface dissociation. While 

MIMOMM cannot currently model reaction barriers, from the results already presented 

we know where the dissociated O atoms are likely to end up. Ultimately, one would like to 

map out the potential energy surfaces for the various 02 and O atom adsorption reactions 

and input them into a molecular dynamics code so that a more realistic simulation of the 

surface could be performed while modeling chemistry on the surface with reliable reaction 

potentials. 

Experiments characterizing the Si and C-terminated SiC(lll) and Si(lll) surfaces 

at low O atom exposures could determine the existence of the predicted stable O atom 

adsorption sites. Monitoring the exhaust gas in while exposing SiC surfaces to an O atom 

flux would be an easy way to determining which species, if any, are actually being desorbed. 

Alternate methods for depositing insulating layers on SiC should be explored. 
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Appendix A.   Definition of terms 

ab initio from first principles. Ab initio is used to describe computational methods based 
on solution of Schrödinger's equation for the electronic wavefunction of an atom or 
molecule. 

Ä angstrom, unit of distance equal to 10~10 meters. 

Atomic Orbital (AO) one of a family of exact solutions for the electronic wavefunction 
of the hydrogen atom. Also referred to as a Basis Function. 

Basis Set a specific collection of basis functions used to describe the electronic wavefunc- 
tion for atoms in a molecule. The Hay-Wadt Effective Core Potential (HWECP) and 
6-31G* are types of basis sets. 

B matrix the transformation matrix between displacements in internal coordinates and 
Cartesian displacements. 

Bohr atomic unit of distance, equal to the average ground state separation of the electron 
and nucleus in atomic hydrogen, 0.530Ä. 

Bulk Cluster the large, peripheral region of the cluster surrounding the embedded clus- 
ter. The bulk cluster, or bulk, does not directly interact with the adsorbate in a 
chemical reaction, but influences the embedded cluster 

Cartesian Coordinates simplest choice of coordinated to specify for a molecule. A 
molecule has 3N (N is the number of nuclei) Cartesian degrees of freedom, while a 
nonlinear molecule only has 3N-6 internal degrees of freedom (6 coordinates associ- 
ated with translation and rotation of the center of mass only affect the net molecular 
kinetic energy), so some method is typically used to remove optimization steps that 
involve center of mass motions. Cartesians typically require the largest number of 
optimization steps because the Hessian in Cartesian coordinates is highly coupled. 

Cluster a finite collection of atoms used to simulate a solid. A cluster is generally parti- 
tioned into two regions, an Embedded Cluster which is surrounded by a Bulk Cluster 

Correlation Energy the correlation energy for a certain state with respect to a specified 
Hamiltonian is the difference between the exact eigenvalue of the Hamiltonian and 
its expectation value in the Hartree-Fock approximation for the state under consid- 
eration. 

Dangling Bond a singly occupied electron MO created by breaking a chemical bond. 
The term dangling bond is commonly used to refer to such MOs present at surfaces. 

Electron Affinity (EA) the energy gained from adding an electron to an atom or molecule 

Electron Correlation Schrödinger's equation for the electronic wavefunction of an atom 
or molecule contains a term which depends on the simultaneous position of two 
electrons. The motion of one electron depends on the motion of other electrons, thus 
electronic motion is correlate. The Hartree-Fock form of the electronic wavefunction 
cannot describe this electron correlation. 
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Electronegativity x the power of an atom or molecule to attract electrons to itself. One 
definition of electronegativity is |(IP+EA) 

Embedded Cluster a small, central subsection of a cluster that is treated at a higher 
level of approximation in a calculation on the cluster. An embedded cluster corre- 
sponds to the notion of an isolated reaction site on a surface. 

GTO Gaussian type Orbital, a Gaussian function used to approximate an AO. 

H an artificial one electron atom that has been modified to have the same electronegativity 
as the atom to which it is bonded by creating a customized basis set for the H atom. 
Used in place of real H atoms for capping a cluster. 

H atom capping/saturation placing H atoms at the lattice locations to which the out- 
ermost atoms in the cluster would be bonded in an infinite solid 

Hartree atomic unit of energy equal to 27.2 electron Volts (eV). 

Hybrid Cluster the combination of the embedded and bulk clusters. 

Internal Coordinates this type of molecular coordinates is referred to as model builder 
or primitive internals, and includes stretches, bends, and torsions. These are com- 
monly used because they involve natural "chemical" parameters to describe molec- 
ular geometry. A good set of internal coordinates will produce a diagonal dominant 
Hessian. 

Ionization Potential (IP) the energy required to remove an electron from an atom or 
molecule. 

^— one kilocalorie per mole, equal to 0.04 eV per molecule. 

LC AO-MO approximate MO constructed from a Linear Combination of Atomic Orbitals 

Molecular Mechanics (MM) a description of molecular structure based on classical 
inter-atomic interaction potentials such as bond stretches, bond angle ends, torsional 
twisting, etc. 

Molecular Orbital (MO) hypothetical eigenfunction of the wave equation for a multi- 
electron molecule. 

MP2 Möller-Plesset second order perturbation method. This technique is a perturbation 
expansion of the uncorrelated Hartree-Fock wavefunction to calculate the second 
order correction to the energy, recovering a large fraction of the correlation energy. 
(The first order perturbation correction to the energy is zero.) 

Natural Internal Coordinates (NIC) these coordinated are a type of local symmetry 
coordinates developed by Pulay [70, 71] based on localized normal modes within a 
molecule. 

Normal Mode Coordinates A set of 3N-6 (3N-5 for linear molecules) orthogonal coor- 
dinates that correspond to the spectroscopic normal vibrational modes of a molecule, 
where N is the number of nuclei in the molecule. Because normal modes are orthog- 
onal, the Hessian is diagonal, so an optimization in normal mode coordinates is quite 
efficient. The drawback of normal mode coordinates is that they must be calculated, 
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which is often more time consuming than performing an optimization using a poorer 
set of coordinates. 

Periodic Boundary Conditions the use of symmetry to connect the outermost atoms 
in a cluster to each other to simulate an infinite material. For example, the atoms 
on the right side of the cluster would be specified to be bonded to atoms on the left 
side of the cluster. In one dimension, this corresponds to making a linear chain of 
atoms into a ring. 

Polytype a specific form of SiC defined by the number of layers stacked along the z axis. 
For example, in the 4H polytype is SiC, the position of layers repeats after 4 layers. 

Slab a section of a surface several atoms layers deep and 10 to 20 atoms wide. This 
structure is repeated periodically in two horizontal dimensions to simulate an infinite 
surface 

Steric relating to the arrangement of atoms in space. Large molecules can assume a 
number of conformations in space without breaking chemical bonds. However, effects 
such as atoms having to move close to each other restricts the conformations that 
the molecule can actually achieve. 

STO Slater type Orbital, an approximate AO used in molecular wavefunction calcula- 
tions. 

STO-nG A STO approximated with an expansion of n Gaussians 

Surface Reconstruction the change in surface structure away from the lattice positions 
for the surface atoms, also a particular surface structure 

Symmetry Coordinates this is a general class of molecular coordinates that are linear 
combinations of primitive internal coordinates. The secular equation describing the 
vibrational energy of a molecule is factored to the maximum extent possible by the 
use of symmetry [69]. 

Termination the boundary condition imposed on the outermost atoms in a cluster to 
simulate the presence of an infinite solid. Without termination, the cluster as a 
whole would be a radical, i.e., possessing unpaired electrons, and would act like a 
chemically different species than the non radical solid to be simulated. 
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Appendix B.   List of Symbols 

Symbol    Definition 

B transformation matrix between internal and Cartesian coordinates 

B Bohr 

C matrix of coefficients of the atomic orbitals 

eV electron volt 

EA electron affinity 

EAI ab initio energy of hybrid system 

EMM molecular mechanics energy of hybrid system 

F matrix representation of Fock Hamiltonian 

G spectroscopic G matrix 

H Hartree, atomic unit of energy = 27.2 electron volts 

H0 the Hartree Fock Hamiltonian 

IP ionization potential 

J[p] DFT Coulomb interaction functional 

kcal kilo-calorie 

MA mass of nuclei A 

n* effective quantum number 

nvar number of internal coordinates specified for a molecule 

N number of nuclei in a molecule 

PpV elements of the density matrix 

qM gross population for each basis function 4>^ 

q^ atomic Mulliken population 

QA atomic charge 

f electron coordinate 

Tij separation between electrons i and j 

riA separation between electron i and nuclei A 

R Radian 

R nuclear coordinate 

RAB separation between nuclei A and B 
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Symbol Definition 

Rni(r) radial part of electronic wavefunction 

S overlap matrix of the atomic orbitals 

SßV elements of the overlap matrix 

St one of the nvar internal coordinates 

T[p] density functional theory (DFT) kinetic energy functional 

Vxe[p] DFT exchange-correlation functional 

V perturbation term to the zeroth order energy 

ZA charge of nuclei A 

X electronegativity 

Xi spin orbital, product of spatial and spin wavefunctions 

e eigenvalues of Roothaan equations 

<f>i atomic orbital j 

<f)Gs
F Is Gaussian function 

(j>ff Is Slater orbital 

^STO-NG slater orbital expanded with N Gaussian functions 

p{r)dr probability of finding an electron in volume element dr 

\P(f) electronic wavefunction 

^(R, r) total molecular wavefunction 

$VB(1,2) valence bond wavfunction for electrons 1 and 2 

$-ffF(l,2) Hartree-Fock wavefunction for electrons 1 and 2 

tyGVB{\,2) generalized valence bond wavefunction for electrons 1 and 2 

£ orbital scaling parameter in a Is Slater orbital 

Q one of 3N Cartesian displacements 

A Angstrom 
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Appendix C.   SiC Model System Energies 

The following tables are compilations of the relevant results from chapter 5. Ta- 

ble C.l contains the energies for the small molecules used for comparisons with the cluster 

reactions. Table C.2 contains the Hartree-Fock results for the Si-terminated SiC(lll) clus- 

ter, and Table C.3 contains the MP2 results. Table C.4 contains the Hartree-Fock results 

for the C-terminated SiC(lll) cluster, and Table C.5 contains the MP2 results. Table C.6 

contains the Hartree-Fock results for the Silicon(lll) cluster. 

Small Molecule Models 

Molecule Model 
Energy (H) 

HF MP2 

H 2ROHF -0.498233 -0.498233 

C 3ROHF -37.677126 -37.732769 

0 3ROHF -74.778966 -74.879847 

Si 3ROHF -288.829374 -288.874528 

H2 
XRHF -1.126828 -1.144100 

CO ^HF -112.737870 -113.018033 

co2 iRHF -187.634176 -188.102190 

CHS 2ROHF -39.554764 -39.668170 

CH30* 2ROHF -114.416236 -114.685746 

H3COCH3 1RHF -154.007462 -154.502071 

SiH3 
2ROHF -290.604753 -290.675345 

SiH30» 2ROHF -365.491980 -365.709630 

H3SiOSiH3 
1RHF 656.254320 -656.588294 

Table C.l    6-31G* energies of small molecules used in reaction caculations. 
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Si-terminated SiC(lll) Cluster 
S19C13H25 

Surface Model 

Hartree-Fock Energy (H) 

ab initio 
MIMOMM 
2 Bilayer 

MIMOMM 
4 Bilayer 

Reconstruction 
Bare 
Bare 
Bare 

4ROHF 
2ROHF 

2GVB-PP(1) 

-3107.287434 
-3107.231180 
-3107.285713 

-3107.285539 -3107.286685 
-3107.216090 

Si Vacancy 
SisCi3H.25 

SisCi3H25 

SisCi3H25 

4ROHF 
2ROHF 

2GVB-PP(1) 

-2818.200471 
-2818.165306 
-2818.165313 

- 
-2818.193653 

Hydrogenation 
H-Si ontop 
(H-Si)2 ontop 
(H-Si)3 ontop 

3ROHF 
2ROHF 
!RHF 

-3107.907559 
-3108.527959 
-3109.146875 

-3107.905638 
-3108.526036 
-3109.146875 

- 

Oxidation 
0-Si ontop 
Si-O-Si bridge 
Si-O-C ring 
^-*ont op ~ ^*~ ^r ing ~ ^ 

Si-O-C ring 
Si-O-C ring 
Si-O-C ring 

4ROHF 
2ROHF 
4ROHF 
4ROHF 
2ROHF 

2GVB 
2GVB 

-3182.185212 
-3182.236653 
-3182.146984 
-3257.051971 
-3182.083401 
-3182.083407 
-3182.083407 

-3182.183299 
-3182.227517 -3182.217861 

-3182.137410 

-3182.070495 
2ROHF orbitals 
Huckel orbitals 

HF Adsorption Energy (g) 

Hydrogenation 
Cluster + nH(g) 4ROHF 

3ROHF 
2ROHF 
^HF 

0.0 
-76.5 
-153.1 (-76.7) 
-230.0 (-76.8) 

0.0 
-76.5 
-153.1 (-76.7) 
-230.0 (-76.9) 

0.0 
(H-Si)B=i 
(H-Si)n=2 

(H-Si)„=3 

Oxidat ion 
Cluster + O(g) 

4ROHF 
2ROHF 
4ROHF 

0.0 
-74.5 

-106.8 
-50.6 

0.0 
-74.5 

-102.3 

0.0 

-92.5 
-45.0 

O-Si ontop 
Si-O-Si bridge 
Si-O-C ring 

Cluster + 20(g) 
4ROHF 

0.0 
-129.6 

0.0 0.0 

^ontop'^'^ring'^ 

Si vacancy 4ROHF +161.6 - +165.4 

Table C.2     Hartree-Fock (6-31G*) energetics of Si-terminated SiC(lll) clusters used in this work 
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Si-terminated SiC(lll) Cluster 
S19C13H25 

Surface Model 

MP2 Energy (H) 

ab initio 
MIMOMM 
2 Bilayer 

MIMOMM 
4 Bilayer 

Reconstruction 
Bare 4ROHF -3109.704721 -3109.704177 -3109.704136 

Si Vacancy 
S18C13H25 

4ROHF -2820.514745 - -2820.512337 

Hydrogenation 
H-Si ontop 
(H-Si)2 ontop 
(H-Si)3 ontop 

3ROHF 
2ROHF 
iRHF 

-3110.335152 
-3110.965989 
-3111.596687 

- - 

Oxidation 
0-Si ontop 
Si-O-Si bridge 
Si-O-C ring 

4ROHF 
2ROHF 
4ROHF 
4ROHF 

-3184.750274 
-3184.862621 
-3184.736188 
-3259.788683 

-3184.749495 
-3184.855145 -3184.844983 

-3184.726279 

MP2 Adsorption Energy (g) 

Hydrogenation 
Cluster + nH(g) 4ROHF 

3ROHF 
2ROHF 
iRHF 

0.0 
-82.9 

-166.1 (-83.2) 
-249.2 (-83.1) 

0.0 0.0 

(H-Si)n=1 

(H-Si)n=2 

(H-Si)n=3 
Oxidation 

Cluster + O(g) 
4ROHF 
2ROHF 
4ROHF 

0.0 
-104.0 
-174.5 
-95.1 

0.0 
-103.8 
-170.1 

0.0 

-163.8 
-89.3 

O-Si ontop 
Si-O-Si bridge 
Si-O-C ring 

Cluster + 20(g) 
4ROHF 

0.0 
-203.5 

0.0 0.0 

^ ontop''öl-Urj'n^-l^ 

Si vacancy 4ROHF + 197.9 - +199.1 

Table C.3    MP2 (6-31G*) energetics of Si-terminated SiC(lll) clusters used in this work 
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C-terminated SiC(lll) Cluster 

CgSii3H25 

Surface Model 

Hartree-Fock Energy (H) 

ab initio 
MIMOMM 

2 Bilayer 
MIMOMM 
4 Bilayer 

Reconstruction 
Bare 
Bare 
Bare 
Bare 
Bare 

4ROHF 
2ROHF 

2GVB 
2GVB 

2GVB-PP(1) 

-4111.394766 
-4111.297933 
-4111.297916 
-4111.297916 

DNC 

-4111.393840 -4111.393770 

2ROHF orbitals 
Huckel orbitals 

- - 
C Vacancy 

CgSii3H25 
4ROHF -4073.482303 - -4073.464211 

Hydrogenation 
H-C ontop 
(H-C)2 ontop 
(H-C)3 ontop 

3ROHF 
2ROHF 
iRHF 

-4112.027434 
-4112.659983 
-4113.292397 

-4112.026682 
-4112.659353 
-4113.291888 

- 

Oxidation 
O-C ontop 
C-O-C bridge 
C-O-Si ring 
^ on t op " ^-/~ ^r ing ~ ^1 

C-O-Si ring 
C-O-Si ring 

4ROHF 
2ROHF 
4ROHF 
4ROHF 
2ROHF 

2GVB 

-4186.238773 
-4186.189023 
-4186.266287 
-4261.127424 
-4186.216075 
-4186.216087 

-4186.237856 
-4186.175370 -4186.163413 

-4186.255885 

-4186.201713 
2ROHF orbitals 

HF Adsorption Energy (jg) 

Hydrogenation 
Cluster + nH(g) 4ROHF 

3ROHF 
2ROHF 
^HF 

0.0 
-84.3 
-168.6 (-84.3) 
-252.8 (-84.2) 

0.0 
-84.5 

-168.8 (-84.36) 
-253.1 (-84.29) 

0.0 

(H-C)n=1 

(H-C)„=2 

(H-C)n=3 

Oxidat ion 
Cluster + 0(g) 

4ROHF 
2ROHF 
4ROHF 

0.0 
-40.8 
-9.6 

-58.1 

0.0 
-40.8 
-1.7 

0.0 

+5.8 
-52.2 

O-C ontop 
C-O-C bridge 
C-O-Si ring 

Cluster + 20(g) 
4ROHF 

0.0 
-109.0 

0.0 0.0 

^ontop~^y"^ring~^ 

C vacancy 4ROHF +147.7 - + 158.4 

Table C.4    Hartree-Fock (6-31G*) energies of C-terminated SiC(lll) clusters used in this work 
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C-terminated SiC(lll) Cluster 

C9Sii3H25 

Surface Model 

MP2 Energy (H) 

ab initio 
MIMOMM 
2 Bilayer 

MIMOMM 
4 Bilayer 

Reconstruction 
Bare 4ROHF -4113.591320 -4113.590790 -4113.590379 

C Vacancy 
CgSii3H25 

4ROHF -4075.561578 - -4075.553303 
Hydrogenation 

H-C ontop 
(H-C)2 ontop 
(H-C)3 ontop 

3ROHF 
2ROHF 
iRHF 

-4112.027434 
-4112.659983 
-4115.565393 

- - 

Oxidation 
0-C ontop 
C-O-C bridge 

4ROHF 
2ROHF 
4ROHF 

-4188.605864 
-4188.632281 
-4263.674058 

-4188.605138 
-4188.621922 -4188.611703 

MP2 Adsorption Energy (jg) 

Hydrogenation 
Cluster + nH(g) 4ROHF 

3ROHF 
2ROHF 
^HF 

0.0 
-100.2 
-200.5 (-100.3) 
-300.8 (-100.3) 

0.0 0.0 
(H-C)n=i 
(H-C)n=2 

(H-C)n=3 

Oxidation 
Cluster + O(g) 

4ROHF 
2ROHF 
4ROHF 

0.0 
-84.5 

-101.1 
-106.9 

0.0 
-84.4 
-94.9 

0.0 

-88.8 
-101.0 

O-C ontop 
C-O-C bridge 
C-O-Si ring 

Cluster + 20(g) 
4ROHF 

0.0 
-202.7 

0.0 0.0 

^'ontop~*-'~^-'ring~>~,* 

C vacancy 4ROHF +186.4 - +191.0 

Table C.5    MP2 (6-31G*) energies of C-terminated SiC(lll) clusters used in this work 
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Silicon(lll) Cluster 

Si22H25 

Surface Model 

Hartree-Fock Energy (H) 

ab initio 
MIMOMM 
3 Bilayer 

Reconstruction 
Bare 4ROHF -6370.850792 - 

Si Vacancy 
Si2iH25 

4ROHF -6081.888239 -6081.870402 
Hydrogenation 

H-Si ontop 
(H-Si)2 ontop 
(H-Si)3 ontop 

3ROHF 
2ROHF 
iRHF 

-6371.850792 
6372.066296 
-6372.674192 

- 

Oxidation 
0-Si ontop 
Si-O-Si bridge 
Si-O-Si ring 

4ROHF 
2ROHF 
4ROHF 
4ROHF 

-6445.722146 
-6445.761154 
-6445.777182 
-6520.667840 

AMI saddle pt 
-6445.737058 
-6445.770469 

HF Adsorption Energy (g) 

Hydrogenation 
Cluster + nH(g) 4ROHF 

3ROHF 
2ROHF 
iRHF 

0.0 
-68.70 

-137.45 (-68.75) 
-206.26 (-68.81) 

0.0 
(H-Si)n=1 

(H-Si)„=2 

(H-Si)n=3 
Oxidation 

Cluster + O(g) 
4ROHF 
2ROHF 
4ROHF 

0.0 
-58.0 
-82.4 
-92.5 

0.0 

-67.3 
-88.3 

O-Si ontop 
Si-O-Si bridge 
Si-O-Si ring 

Cluster + 20(g) 
4ROHF 

0.0 
-162.6 

0.0 

*-'ontop~^*-~^-'ring~>5* 

Si Vacancy 4ROHF +83.6 +94.8 

Table C.6    Hartree-Fock (6-31G*) energies of silicon(lll) clusters used in this work 
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Appendix D.   Generation and use of Delocalized Coordinates 

This appendix discusses the use of the program Deloc.x to generate set of delocalized 

coordinates as described by Baker et al [10]. The main driver program, delocal.f, is fairly 

well commented. Source code of this program is included at the end of this appendix. 

The names of the subroutines copied from GAMESS that must be linked with delocal.o 

are listed, but only the modifications to these routines are listed. Delocal.x does not give 

useful error messages from crashes due to errors in the input file, or due to the limits set 

on the B matrix etc being too small for the molecule being considered. 

There are three basic steps in the generation of dies: 

1. Generate a set of primitive internal coordinates (PIC), bond stretches, bond angles, 
and torsional angles 

2. Calculate and diagonalize the G matrix for this set of coordinates without inverse 
mass weighting (This requires a change in the GAMESS subroutine GINV). 

3. Write a $ZMAT card for GAMESS 

Modifications to several GAMESS routines are required to enable use of DLCs. 

D.l    Generation of DLCs 

This DLC generation code is another GAMESS/MM3 merger. I copied and modified 

the routines in MM3 that read the lists of connected an attached atoms and define all 

possible stretches, bends, and torsions. I then set up an GAMESS IZMAT array and use 

the appropriate routines from GAMESS (with minor modifications) to calculate the B 

matrix, and create and diagonalize the G matrix. The column vectors of the G matrix 

that correspond to non-zero eigenvalues become the DLCs. 

D.l.1 Source Code Description. The following routines were copied from MM2, 

collected in the main driver program delocal.f, and modified 

C SUBROUTINE BONDTB HM2 
C SUBROUTINE THETA MM2 
C SUBROUTINE OMEGA MM2 
C SUBROUTINE KS0RT(NK,K,KK) MM2 
C FUNCTION IPACK4(H,I,J,K,L) MM2 
C SUBROUTINE UNPACK4 MM2 

delocal.f is fairly well commented. The reader is directed to the source code for more 

details. 
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The following routines from GAMESS must be linked with delocal: 

9598 Sep 25 1996 abrt.f 

5619 Sep 25 1996 bend.f 

16739 Sep 25 1996 blas.f 
6181 Sep 25 1996 bmat.dlc.f 

1027 Sep 25 1996 bstr.f 

1398 Sep 25 1996 cstr.f 

3516 Sep 25 1996 dgedi.f 

2787 Sep 25 1996 dgefa.f 

2172 Sep 25 1996 dgop.f 

74411 Sep 25 1996 eigen.f 

2163 Sep 25 1996 fillzm.f 

6277 Jun 8 11:29 ginvr.dlc.f 
964 Sep 25 1996 nxtval.f 

927 Sep 25 1996 prsq.f 

276 Sep 25 1996 synch.f 

1801 Sep 25 1996 tfsqu.f 

3267 Sep 25 1996 tors.f 

2601 Sep 25 1996 trang.f 

458 Sep 25 1996 vclr.f 

4991 Sep 25 1996 zmat2.f 

eigen.f and blas.f are complete GAMESS modules. The diagonalization of the G 

matrix used so many subroutines from these modules that is was easier to use them in 

their entirety. The other files are individual subroutines copied from GAMESS modules. 

bmat.dlc.f and ginvr.dlc.f are modifications of the GAMESS routines of the same 

name. The bulk of the modifications involve commenting out operations not needed, like 

writing the IZMAT array to scratch file, calculating the B inverse matrix, etc. The rest 

of the modifications are mainly for writing diagnostic information to the screen. The 

modifications are easy to find by diff'ing these files against the original GAMESS source 

code. 

D.I.2 Using Delocal.x. Figure D.l shows an input file for the program Delocal.x. 

This input file is for fluoroethylene, the example described in exquisite in Baker's paper [10]. 

The eigenvalues of the G matrix, the DLCs, etc generated by Delocal.x can be directly 

compared with the results in this paper. 

The first line of the input file is an 80 character header. The second line gives the 

number of atoms. Line 3 gives the number of Connected Atom Lists, which are given 

in Lines 4 through 9. The line after the last Connected Atom List gives the number of 

Attached Atom lists, which are listed in the following two lines. In the MMn series of 

programs, a connected atom is bonded to more than one atom, while an attached atom 
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is bonded to only one atom. (The format for the connected and attached atom lists is 

column specific, and can be found in delocal.f.) The line after the attached atom lists 

defines the unit used in the Cartesian coordinates for the atoms, ANGSTROM or BOHR. 

The Cartesian coordinates for the atoms in GAMESS Cartesian format comes last. 

NOTE: Some care is needed in defining connected atom lists. If the same atom pair 

is given in more than one connected atom list, the PIC assignment algorithm from MM2 

will likely blowup. 

FLUOROETHYLENE Test case from Baker's paper HEADER A80 
12X 13 

12X 13 

12X 13 

NAT 6 
NCON LISTS 3 

3 1 4 
5 2 6 
1 2 

NATTCH 0 
ANGSTROM 

C 6.0 -0.061684 0.67379 0.00000 

C 6.0 -0.061684 -0.72621 0.00000 

F 9.0 1.174443 1.33105 0.00000 

H 1.0 -0.927709 1.17379 0.00000 

H 1.0 -0.927709 -1.22610 0.00000 

H 1.0 0.804342 -1.22610 0.00000 

Figure D.l    Fluorethylene input file for program Delocal.x 

When you execute Delocal.x, you will be asked for the input file name. The program 

read the input file, defines a set of internal coordinates and echoes them to the screen. 

The B and G matrices are then calculated, and the G matrix is diagonalized, with the 

eigenvalues of the G matrix echoed to the screen. There will be EXACTLY3N-6 numeri- 

cally non-zero eigenvalues of the G matrix. Delocal.x then creates a file named ZMAT that 

contains a $ZMAT deck for the GAMESS input file, and writes an additional SCONTRL 

card with the appropriate value for NZVAR. 

Figure D.2 shows the information dumped to the screen while generating DLCs for 

fluoroethylene. Figure D.3 is the $ZMAT deck that is created in the file ZMAT. 

D.2    Frozen Primitive Coordinates in DLCs 

One can freeze individual primitive coordinates when using DLCs; however, this will 

require more extensive modifications GAMESS. As described in Reference [10]: 
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IHPUT FILE NAHE = 

Fluoro.die 

ATOM TYPE CHARGE HASS (ABU) 

1 C 6.00 12.0000 

2 C 6.00 12.0000 

3 F 9.00 18.9984 

4 H 1.00 1.0078 

S H 1.00 1.0078 

6 H 1.00 1.0078 

HUHBER OF BOHDS 5 
HUHBER OF AH6LES 6 
HUHBER OF TORSIONS 4 
TOTAL HUHBER OF PRIHITIVES 15 

LEHGTH OF IZHAT ARRAY 60 

IZHAT ARRAY 

IZHAT(1)= 

1 i, 2, 
1. i, 3, 
1. i, 4, 
1. 2, 5, 
1, 2, 6. 
2, 2, 1, 3, 
2, 2, 1, 4, 
2, 3, 1, 4, 
2, 1, 2, 5, 
2, 1, 2, 6, 
2, 5, 2, 6, 
3, 3, 1, 2, 5, 
3, 3, 1, 2, 6, 
3, 4, 1, 2, 5, 
3, 4, 1, 2, 6, 

IHTERHAL COORDIHATES G Hatrix D iagonalization 

1 2 6456163828106 Eigenvalue 1 -2.7794929616583D-16 

2 2 6456168334623 Eigenvalue 2 -9.6603238681852D-17 

3 1 8897253269082 Eigenvalue 3 8.3253051443601D-18 

4 1. 8896214005176 Eigenvalue 4 0.25282297912648 

5 1. 8896230371584 Eigenvalue 5 0.40164265930883 

6 2. 0594882747752 Eigenvalue 6 0.62952826897820 

7 2. 0943953042855 Eigenvalue 7 0.89161474745617 

8 2. 1293017281189 Eigenvalue 8 0.95520136151152 

9 2. 0943000362294 Eigenvalue 9 1.1555879572794 

10 2 .0942995362845 Eigenvalue 10 2.0228419499204 

11 2 .0945857346657 Eigenvalue 11 2.3717845988896 

12 3 .1415926535898 Eigenvalue 12 2.6162906671169 

13 0. Eigenvalue 13 3.9764819217071 

14 0. Eigenvalue 14 4.2059895026748 

15 a .1415926535898 Eigenvalue 15 4.7120460400846 

HUHBER OF ZEROES IH G HATRIX 

Figure D.2    Screen dump from DLC generation for fluoroethylene 
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$ZMAT IZHAT(1)= 
1 

1 
2, 

3, 

1 4, 
2,    5, 
2,    6, 

2 2,    1, 3, 
2 2,    1, 4, 
2 3,    1, 4, 
2 1 2, 5, 
2 1 2, 6, 
2 5,    2, 6, 
3 3,    1, 2, 5, 
3 3,    1, 2, 6, 
3 4,    1, 2, 5, 
3 4,    1, 2, 6, 

IJS(l) = 
666 666 

SIJ(l) 

-.1751 

= 
-.1135 0.1134 0.0157 -.0771 -.6251 0.4187, 0 2064, 

0.3649 -.4365 0.0716 0.0000 0.0000 0.0000 0.0000, 

-.6979 -.0848 -.1289 -.1851 -.0625 -.0718 -.3045, 0 3763, 

-.3388 0.0291 0.3097 0.0000 0.0000 0.0000 0.0000, 

0.1283 -.2241 0.3893 -.3307 0.3723 -.3243 0.2708, 0 0535, 

-.3822 0.4493 -.0670 0.0000 0.0000 0.0000 0.0000, 

-.1325 -.6505 -.4710 -.0155 0.0802 0.1267 0.3126, - 4394, 
-.0770 -.0480 0.1250 0.0000 0.0000 0.0000 0.0000, 

-.0640 -.0876 -.0810 -.5975 -.5938 0.0066 0.0143, - 0209, 
0.2124 0.2129 -.4254 0.0000 0.0000 0.0000 0.0000, 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000, 0 0000, 

0.0000 0.0000 0.0000 0.7286 0.5664 0.3411 0.1789, 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000, 0 0000, 
0.0000 0.0000 0.0000 -.4423 0.1461 0.2581 0.8464, 

-.1276 0.1555 0.5365 -.1595 -.3372 0.2215 0.2127, - 4342, 
-.1963 -.2116 0.4079 0.0000 0.0000 0.0000 0.0000, 

0.0045 -.5471 0.3880 0.5470 -.3996 0.0180 -.1623, 0 1444, 
-.0409 0.1639 -.1230 0.0000 0.0000 0.0000 0.0000, 

0.5590 0.0390 -.3363 -.0095 -.4270 -.2487 0.0522, 0 1964, 
-.3783 -.0015 0.3798 0.0000 0.0000 0.0000 0.0000, 

0.3397 -.4169 0.1976 -.4173 0.1918 0.1957 -.3912, 0 1955, 

0.1957 -.3926 0.1970 0.0000 0.0000 0.0000 0.0000, 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000, 0 0000, 

0.0000 0.0000 0.0000 0.1535 -.6386 0.7530 -.0392, 

$END 

$C0NTF IL I (ZVAR= 15 $EHD 

Figure D.3    $ZMAT deck for fluoroethylene DLCs 
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What is done is to take a unit vector with unit component corresponding to 
the primitive internal (stretch, bend, or torsion) that one wishes to keep con- 
stant. This vector is then projected onto the full active subspace, normalized, 
and then all (n, say) active vectors are Schmidt orthogonalized in turn to the 
normalized, projected constraint vector. The last vector taken in the active 
space should drop out (since it will be linearly dependent on the other vec- 
tors and the constraint vector) leaving (n-1) active vectors and one constraint 
vector. 

The calculation of the nuclear displacements in the optimization process and the 

iterative conversion of internal coordinates to Cartesians uses different combination of the 

original DLCs and the Schmidt orthogonalized set. This will require a change in the storage 

of the S matrix in GAMESS, and probably a separate subroutine to update coordinates 

using DLCs. One will also need to store the S inverse matrix to track the values of the PICs 

to correct for sign changes in bends and torsions in the iterative conversion of internals to 

Cartesians. Frozen PICs was not implemented in this work due to time constraints. 

D.3   Modifications to GAMESS to enable the use of DLCs 

D.3.1 Reading the $ZMAT deck. First, the symmetry matrix is quite large , so 
the number of NIJs needs to be increased. Note: Line numbers listed are slightly 
different from the lines numbers in GAMESS source code. 

1841 C*M0DULE ZMATRX *DECK ZMATIN 
1842 SUBROUTINE ZMATIN 
1843 IMPLICIT DOUBLE PRECISION(A-H.O-Z) 
1844 PARAMETER (MXATM=500) 
1845 COMMON /FMCOM / X(l) 
1846 COMMON /INFOA / NAT,ICH,MOL,NUM,NX,NE,NA,NB,ZAN(MXATM),C(3,MXATM) 

1847 C 
1848 C     GROW FAST MEMORY FOR $ZMAT READING  
1849 C 
1850 NELS = 30*MAX(3*NAT-6,1) 
1851 C 
1852 C     NIJS = 6*3*NAT 
1853 C 
1854 c  JRS mod for DLCs 
1855 c 
1856 NIJS=100*6*3*NAT 
1857 C 

For other types of symmetry coordinates, the $ZMAT deck contains both the indices 

of the non-zero elements of the symmetry matrix as well as the non-zero values. For 

DLCs, all elements of the symmetry matrix are non-zero, so writing the indices of the 

whole matrix is a waste of space. Mike Schmidt has added a hidden option, dlc=.t., and 

modified ZMATRX:ZMTSYM read only the SIJs. My approach was to write 666,666 as the 
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only two elements for the IJs, and read the SIJs accordingly. Here's my code modifications 

2066 C*M0DULE ZMATRX *DECK ZMTSYM 
2067 SUBROUTINE ZMTSYM(S,SIJ,IJS,IZHAT,IZMAT2,NZVAR, 
2068 * N3NH6,NZMAT,NIJS,SYM) 

2106 c 

2107 c DL( ):  don't enter all ijs in input file for full matrix 
2108 c 

2109 if( (ijs(l,l).eq.666) .and. (ijs(2,1).eq.666)) then 

2110 SYM=.TRUE. 

2111 ictr=l 

2112 do 600 i=l,nzvar*(3*nat-6) 

2113 s(ictr)=sij(ictr) 

2114 ictr=ictr+l 

2115 600 continue 

2116 goto 630 

2117 endif 

2118 c 

2119 DO 70 N = l.NIJS 

2120 I = IJS(l.N) 

2121 J = IJS(2,N) 

2122 SVAL = SIJ( N) 

2123 C ARE ALL VALUES BETWEEN 0-NZVAR? 

2124 IF (     I) 120,70,30 

2125 30 IF (NZVAR-I) 120,40,40 

2126 40 IF (     J) 120,70,50 

2127 50 IF (NZVAR-J) 120,60,60 

2128 60 CONTINUE 

2129 IJ = NZVAR*(J-1) + I 

2130 S(IJ) = SVAL 

2131 SYH = .TRUE. 

2132 70 CONTINUE 
2133 c 

2134 630 continue 
2135 c 

D.4    Modifications to the iterative process to convert internals to cartesians 

In 1993, Theresa Windus added an iterative scheme to convert optimization displace- 

ments in internal coordinates to updated Cartesian coordinates. In this iterative process, 

bond and torsion angles can switch from 180-6 to -180+6. This means that the difference 

between the old coordinate value and the new value can get very large, from subtraction 

of a negative number. There are some checks on the value of a given change in coordinate 

based on the magnitude of the coordinate, i.e., if the value of the change is close to 2 7r, the 

actual change is redefined as the difference between this value and 2 ir.This correction is 

actually wrong for symmetry coordinates. Spectroscopic symmetry coordinates and Natu- 

ral Internal Coordinates do not use many torsion angles, so their values are smaller than 
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the limits defined for this correction, so they do not trip this condition. DLCs include a 

large number of torsions, so their values can get large enough to trip this condition, which 

ends up producing wrong Cartesian coordinates, and the optimization soon diverges. 

The right way to handle this is to invert the S matrix for the DLCs and track the 

iterative conversion process in PICs, then convert back to DLCs. The workaround I came 

up with is that when this condition is tripped, the iterative conversion process is aborted. 

This means that the conversion from internals to Cartesians isn't as good as it should be, 

but in limited testing this condition happened about once every 10 optimization cycles, so 

the optimization isn't affected too much. 

4902 C*M0DULE STATPT *DECK UPDISP 
4903 SUBROUTINE UPDISP(DELC0R,NCVAL,NCO0RD,DXMAXT,0UT,ITBMAT) 

4953 C   ITERATE AS IN PULAY AND COWDRKERS, JACS, 101, 2550 (1979) 

4954 C   EXCEPT CHANGING THE B MATRIX AND ITS INVERSE IN EACH ITERATION 

4955 C 

4956 DO 100 I = l.ITBMAT 

4957 CALL TFDS(DELC0R,NCVAL,NC00RD) 
4958 CALL VADD(XX(LXC0R) ,1,DELC0R,1,XX(LXC0R),l,NC0ORD) 

4959 CALL DC0PY(NC00RD,XX(LXC0R),1,C,1) 

4960 CALL BANDBI 
4961 CALL DAREAD(IDAF,I0DA,XX(LQNEtf),NCVAL,INZMAT,0) 

4962 CALL VSUBttX(LQNEW),1,XX(LQ0),1,DELC0R,1,NCVAL) 

4963 c 

4964 c 

4965 C 
4966 C   CORRECT FOR DISPLACEMENTS THAT GO OVER 180 AND 360 DEGREES. (TLW) 

4967 C 

4968 c 

4969 C 

4970 c 
4971 c This check screws up DLCs, as they are linear combinations of all 

4972 c coordinates, including TORSIONS, and can have absolute values large 

4973 c enough to trigger this check 

4974 c 
4975 c Actually, this check could screw up any symmetry coordinates, but most 

4976 c normal symmetry coords don't include many torsions and so happen to miss 

4977 c this check just by luck 

4978 c 
4979 c Just zeroing out differences on those coordinates that were two large mixed 

4980 c weird, finite displacements into all the Cartesians, which caused bad steps. 

4981 c Now, if the difference is too large, we just skip the iterative procedure and 

4982 c live with a larger error in the coordinate conversion on those steps 

4983 

4984 c 

4985 if (sym) then 

4986 do 500 j=l,ncval 
4987 if (abs(delcor(j)).gt.(0.1d0)) then 

4988 goto 101 

4989 end if 

4990 500  continue 
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4991 goto 51 
4992 endif 
4993 c 
4994 c 
4995 c 
4996 DO 50 J = l.NCVAL 
4997 IF (ABS(DELC0R(J)).GT.(TW0*PI-0NE)) THEN 
4998 IF (DELCOR(J).LT.ZERO) THEN 
4999 DELCOR(J) = DELCOR(J) + TWO*PI 
5000 ELSE 
5001 DELCOR(J) = DELCOR(J) - TWO*PI 
5002 END IF 
5003 END IF 
5004 IF (ABS(DELCOR(J)).GT.(PI-ONE)) THEN 
5005 IF (DELCOR(J).LT.ZERO) THEN 
5006 DELCOR(J) = DELCOR(J) + PI 
5007 ELSE 
5008 DELCOR(J) = DELCOR(J) - PI 
5009 END IF 
5010 END IF 
5011 50  CONTINUE 
5012 c 
5013 51  continue 

Putting a tolerance check in the decision to change the sign of a torsion angle also 
helps reduce the occurences of this problem. 

1732 OMODULE ZMATRX *DECK TORS 
1733 SUBROUTINE TORS(EQVAL,NOINT,I,J,K,L,C,B,NDIM) 
1734 C 

1823 c JRS DLC mod 
1824 c 
1825 c original code line 
1826 c       IF(SENSE.LT.ZERO) EQVAL = -EQVAL 
1827 c 
1828 c trial modification 
1829 IF ( (SENSE.LT.ZERO) .AND. (ABS(SENSE) .GT. TOL)) THEN 
1830 EQVAL = -EQVAL 
1831 END IF 

D.5    delocal.f Source Code 

c 
C 23 SEP 96 PROGRAM TO SET UP DELOCALIZED COORDINATES AS PER BAKER'S 

C J CHEH PHYS PAPER 

C 

PROGRAM DELOCAL 

c 
C CONTAINS THE FOLLOWING SUBROUTINE 

C 
C SUBROUTINE BONDTB               MH2 

C SUBROUTINE THETA                MM2 

C SUBROUTINE OMEGA                MM2 

C SUBROUTINE HEAVY(NAT,ITYPE,ZMASS) SHOE *** NOT USED **** 

C SUBROUTINE KSORT(NK,K,KK)        MM2 

C FUNCTION IPACK4(M,I,J,K,L)       MM2   (BAY NOT BE USED) 

C SUBROUTINE UNPACK4              MM2   (MAY NOT BE USED) 

C 
IMPLICIT DOUBLE PRECISION(A-H,D-Z) 
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C0MM0H/DLBERT/H,X(5OO),Y(500),Z(500),ITYPE(500),BAME(50),WT(50) 

C0MM01J/C0BBECT/JJ(5OO) ,IAT(500,4) ,HC0BB(40),ICOBB(40,16) , M2 0013 

1            BATTCH,JATTCH(500),KATTCH(500) M2 0014 

C0MM0B/CYCLC/IBUTA(15),IBUT,BCBTH,BPR0P M2 0019 

C0MM0B/BHD/BBND,IR(12475O) ,BBK(500,4) ,BK(350) ,BL(350) ,CSTR M2 0020 

C0MM0B/THET/HTHETA,B0HPL,IABG(650),KOUTP(50),AHAT(65O),AC0B(65O), H2 0026 

1   KSBOPB(650),SBK(10),GPBK(100),SF M2 0027 

C0MM0B/0MEG/ BOMEGA,IOMG(1040),KTB(1040),BTC,TC0H1(520), M2 0028 

1   TC0B2(52O),TC0B3(52O) M2 0029 

C0HM0H/AB0M/BBDP(5O),AHGP(5O),CaRR,DC0RR M2 0030 

IBTEGER  ITYPE,HAME,JJ,IAT,HCOBB,ICOBB,JATTCH,KATTCH, H2 0036 

1   IR.NBK H2 0037 

CHARACTER HT*10 
DATA HT/'         »/ H2 0068 
  H2 0069 

PARAMETER (HXATM=500,HXIZMAT=5000) 

PARAMETER (BHR2ABG=0.52917724924D+00) 

CDHMOB /IBFOA / BAT,ICH,MUL,BUM,HX,BE,BA,BB,ZAB(MXATM),C(3,HXATM) 

COMBDB /MASSES/ ZHASS(MXATM) 

CHARACTER CPD*30,HEADER*80 

CHARACTER ATHAME*4 (MXATM) ,CUBITS*8 
DIHEBSIOH IZMAT(HXIZMAT) 

VARIABLES FOR BMAT ABD GIBVR SECTIOB 

PARAMETER (MX=500000) 

DIMEBSIOH XT(3*MXATM) , ZMAT(3*MXATM) 

DIMEBSIOB XB(MX) ,XBIHV(MX) ,XEVEC(MX) ,XG(MX) ,XRECPM(MX) , 

# XEVAL(MX) ,XSCR(MX) ,XIA(MX) ,XGLIH(MX) 

GET BAME OF IBPUT FILE 

UBIT=5 IS KEYBOARD EHTRY 

UBIT=6 IS SCREEB OUTPUT 

I0UT=4 

IBP=3 

DATA IBPUT SECTIOB 

WRITEC6,*) '  ' 
140 WRITE(6,FMT='($,A)') ' IBPUT FILE BAME = ' 

READ(5,150) CPD 

150 FORMAT(A30) 
OPEB (UHIT=INP, FILE=CPD, STATUS=' OLD' ,ERR=160) 

GO TO 170 

160 WRITE(6,*) '  ' 

WRITE(6,*) ' FILE HOT FOUHD   , REEBTER.. 

WRITE(6,*) '  ' 

GO TO 140 

170 CONTIBUE 

READ CONBECTED ATOM LISTS 

M2 0069 

M2 0070 

B2 0057 

M2 0059 

M2 0081 
M2 0082 

M2 0083 

M2 0084 

M2 0085 

B2 0086 

M2 0087 

M2 0088 

M2 0089 

M2 0090 

M2 0167 

M2 0168 
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REWIND(INP) 
READ(IHP,910) HEADER 
READ(IBP,961) HAT 
READ(IBP,961) BCOB 
B=NAT 
BC00RD=3*HAT 

910 FORMAT(A80) 
960 FORMAT(24X,A8) 
961 F0RMAT(12X,I3) 
962 FORMAT(22X,13,2X,13) 
963 FORMAT(24X.F10.5) 
964 FORMAT(20X,12I5) 

IF (HCOH.EQ.O) GO TO 330 
DO 320 1=1,HCOH 
READ (IHP,300) (ICOHH(I.K),K=1,16) 

300 FORMAT (1615) 
DO 310 K=l,16 
IF (IC0HH(I,K).EQ.O) GO TO 320 

310 HC0HH(I)=HC0HH(I)+1 
320 COHTIHUE 

M2 0169 
M2 0170 
M2 0171 
M2 0172 
M2 0173 
M2 0174 
M2 0175 
H2 0176 

READ(IHP,961) HATTCH 

READ ATTACHED ATOM LISTS   

330 IF (HATTCH.HE.0) READ(IHP,300)(JATTCH(I),KATTCH(I),1=1,HATTCH) 

READ COORDIHATES AHD ATOM TYPES   
THIS IS HOW GAMESS STYLE CARTESIAHS 

FLAG FOR UHITS BOHRS OR AHGSTROMS 

READ(IHP,*) CUBITS 

DO 500 1=1,HAT 
500  READ(IHP,*) ATHAME(I),ZAH(I),X(I),Y(I),Z(I) 

500  READ(IHP,970,EHD=505) ZAH(I),X(I),Y(I),Z(I) 
970 FORMAT(20X,,F5.1,5X,F10.5,5X,F10.5,5X,F10.5) 

MM2   WANTS X(*),Y(*), AHD Z(*) 
GAMESS WAHTS C(3,*) 

505 COHTIHUE 

IF(IBDEX(CUBITS,>ABG>)) THEH 
SF=(1.0D0/BHR2AHG) 

ELSE 
SF=1.0D0 

EHD IF 

M2 0177 
M2 0178 

M2 0179 

M2 0180 

DO 510 1=1,HAT 
C(1,I)=X(I)*SF 
C(2,I)=Y(I)*SF 
C(3,I)=Z(I)*SF 

510      ITYPE(I)=IHT(ZAH(D) 

ASSIGN MASSES BASED OH HUCLEAR CHARGE 

ACTUALLY DOH'T DO THIS IH BAKER'S PROCEDURE, CHANGE MADE IH GIHDELOC 
CALL HEAVY(HAT,ITYPE,ZMASS) 
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c 
c 

WRITE(*,900) 

DO 520 1=1,NAT 
WRITE(*,901) I,ATHAME(I),ZAH(I),ZMASS(I) 

520 COHTINUE 

WRITE(*,*) '    ' 
900 F0RMAT(5X,'ATOM',5X,'TYPE>,5X,'CHARGE',5X,'MASS (AMU) ') 

901 F0RMAT(5X,I3,7X,A4,3X,F6.2,6X,F8.4) 

C 

C 
c 370 COHTIHUE 

C 

C 

C 
C PREPARE AHD WRITE ATOMIC BOND TABLE   

610 CALL BOHDTB 

HCPRH=HPROP 

C 

C 
C PARSE BOHD TABLE IHTO IZMAT SPECIFICATIOH 1,I,J, ETC 

C 
HZVAR=0 

IZ=1 
DO 530 1=1,HAT 

DO 535 J=l,4 
IF ( (IAT(I,J) .HE. 0) .AHD. (IAT(I,J) .GT. I))  THEN 

IZMAT(IZ)=1 

IZHAT(IZ+1)=I 
IZHAT(IZ+2)=IAT(I,J) 

IZ=IZ+3 
HZVAR=HZVAR+1 

EHD IF 

535  COHTIHUE 

530 COHTIHUE 

HBOHD=HZVAR 

c   
c M2 0262 

C SET UP BOHD AHGLE LIST (IAHG)         H2 0263 

CALL THETA H2 0264 

c 

C 
C    I,J,K,L ARE THE IHDICES IH THE IAHG ARRAY 

C      J-K-L DEFIHE THE IH PLAHE AHGLES, WHICH I WAHT 
C      K-I-K DEFIES THE HM2 OUT OF PLAHE AHGLES, WHICH I DOH'T 

C 

C 
DO 560 M=1,HTHETA 

CALL UHPACK4(IAHG(M),I,J,K,L) 

IZHAT(IZ)=2 

IZMAT(IZ+1)=J 

IZMAT(IZ+2)=K 

IZMAT(IZ+3)=L 

IZ=IZ+4 

560 COHTIHUE 

C 
HZVAR=HZVAR+HTHETA 

c M2 0265 

C SET UP DIHEDRAL AHGLE LIST (IOMG)     H2 0266 

IF(HCOH.HE.O) CALL OMEGA «2 0267 

DO 570 M=1,N0MEGA 
CALL UHPACK4(I0MG(M),I,J,K,L) 

IZHAT(IZ)=3 
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IZHAT(IZ+1)=I 

IZMAT(IZ+2)=J 

IZHAT(IZ+3)=K 

IZMATCIZ+4)=L 

IZ=IZ+5 

570 CONTINUE 

HZMAT=IZ 

HZVAR=HZVAR+NQMESA 

WRITEC*,*) 'NUMBER OF BONDS >,NBOND 
WRITE(*,*) 'NUMBER OF ANGLES '.NTHETA 

WRITEC*,*) 'NUMBER OF TORSIONS >,NOMEGA 
WRITEC*,*) 'TOTAL NUMBER OF PRIMITIVES   ',HZVAR 

WRITEC*,*) '    ' 
WRITE(*,*) 'LENGTH OF IZMAT ARRAY        >,NZMAT 

C 

C 
WRITE(*,*) '    ' 

WRITE(*,*) ' IZMAT ARRAY' 

WRITE(*,*) '    ' 

WRITEC*,970) 
NBHD=NZVAR-HOMEGA-NTHETA 

ICTR=1 
DO 580 I=1,NZVAR 

IF (I .LE. NBND) THEN 
WRITEC*,971) IZMATCICTR),IZMATClCTR+1),IZMATCICTR+2) 

ICTR=ICTR+3 

END IF 
IF C CI .GT. NBND) .AND. Cl .LE. NBND+NTHETA) ) THEN 

WRITEC*,972) IZMATCICTR),IZMATClCTR+1),IZHATClCTR+2), 

* IZMATCICTR+3) 

ICTR=ICTR+4 

END IF 
IF Cl .GT. NBND+NTHETA) THEN 
WRITEC*,973) IZMATCICTR) , IZMAT ClCTR+1) .IZMATCICTR+2) , 

* IZMATClCTR+3),IZHATClCTR+4) 

ICTR=ICTR+5 

END IF 
580 CONTINUE 

C 

C 
C   CALCULATE B MATRIX 

C 
NVAR=NZVAR 
CALL BHATCXB,IZMAT,ZMAT,XSYM,XT,NZVAR,NVAR,NCOORD) 

C 

C 
c    CALCULATE ÖINVR AND ANALYZE FOR ZERO EIGENVALUES 

C 
CALL GINVRCXB,XBINV,XEVEC,XG,XRECPM,XEVAL,XSCR,XIA,XGLIN, 

* NVAR,NCOORD,NAT,NZERO) 

C 
CALL WRITZMTCXEVEC,IZMAT,NZVAR,NZERO,NBND,NTHETA,NOMEGA) 

C 
C  970 F0RMATC5X,'TYPE',8X,'I',9X,'J',9X,'K',9X,'L') 

970 F0RMAT(5X,'IZMATCl)=') 
971 F0RMATC5X.I4,',>2X,I4,>,>2X,I4,>,') 

972 F0RMATC5X,I4,','2X,I4,','2X,I4,',',2X,I4,',') 
973 F0RMAT(5X,I4,','2X,I4,','2X,I4,',',2X,I4,',',2X,I4,',') 

WRITEC*,*) '     ' 

C 

END 

C 

C 

C 
c ********************************************************************* 
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c 
C SUBROUTINE WRITZHT 

C 
C ********************************************************************* 

c 
SUBROUTINE WRITZMT(EIGVEC,IZMAT,NZVAR,BZERO,NBND.BTHETA, 

# BOMEGA) 

C 
C   WRITES $ZHAT DECK IB GAMESS FORMAT 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

DIMEBSIOB EIGVEC(BZVAR,BZVAR),IZMAT(*) 

C 
OPEN(UNIT=10,FILE='ZMAT>,STATOS=>NEW>,ACCESS='SEQUENTIAL') 

REWIND(IO) 

WRITE(10,900) 

C 

C    WRITE IZMAT ARRAY 

C 
NBND=NZVAR-NOMEGA-BTHETA 

ICTR=1 

DO 580 I=1,BZVAR 

IF (I .LE. BBBD) THEB 
WRITE(10,911) IZMAT(ICTR),IZHAT(ICTR+l),IZMAT(ICTR+2) 

ICTR=ICTR+3 

EBD IF 

IF ( (I .GT. HBND) .ABD. (I .LE. BBBD+BTHETA) ) THEB 
WRITE(10,912) IZMAT(ICTR),IZHAT(ICTR+l),IZMAT(ICTR+2), 

# IZMATCICTR+3) 

ICTR=ICTR+4 

EBD IF 
IF (I -GT. BBBD+BTHETA) THEB 
WRITE(10,913) IZMAT(ICTR),IZMAT(ICTR+l),IZMAT(ICTR+2), 

# IZHAT(ICTR+3),IZMAT(ICTR+4) 

ICTR=ICTR+5 

EBD IF 
580 COBTIBUE 

C 
C    WRITE US SPECIFICATIOB 

c 
c 26 mar 96 changed so I just write IJS(1)=666,666 

c 

C 
B3BH6=BZVAR-BZER0 

WRITE(10,920) 

write(10,*) ' 666,666 ' 

c     DO 300 K=1,B3BM6 
c        WRITE(10,921) (M,K, M=1,BZVAR) 

c 300 COBTIBUE 

C 
C    WRITE SIJs (ROWS) OOPS ! 

C 
C     WRITE(10,930) 

C     DO 400 I=BZERO,BZVAR 

C        WRITE(10,931) (EIGVEC(I,J),J=1,BZVAR) 

C 400 COBTIBUE 

C 
C    WRITE SIJs (COLUMNS) 

WRITE(10,930) 

DO 400 I=BZER0+1,BZVAR 

C     write(10,*) ' **** I **** ',1 
WRITE(10,931) (EIGVEC(J,I),J=1,BZVAR) 

400 CONTINUE 

C 

C 

C 

C 

WRITE(10,940) 
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WRITE(10,950) HZVAR 
CLOSE(IO) 

900 F0RMAT(1X,'$ZMAT     IZHAT(1)=') 
911 FORMAT(SX,14,',>2X,I4,>,>2X,I4,>,') 
912 FORMAT(5X,14,','2X,I4,','2X,I4,',>,2X,I4,',') 
913 F0RMAT(5X,I4,','2X,I4,','2X,I4,',',2X,I4,',',2X,I4,',') 
920 F0RMAT(1X,'IJS(1)=>) 
921 F0RMAT(7(I3,>,',I3,\>2X)) 
930 F0RMAT(1X,'SIJ(1)=>) 
931 F0RMAT(8(F6.4,',  ')) 
940 F0RMAT(1X,'$EHD>) 
950 F0RMAT(1X,'$C0HTRL HZVAR=',I4,' $EHD>) 

RETURH 
END 

********************************************************************* 

SUBROUTIHE BOHDTB 

********************************************************************* 

SUBROUTIHE BOHDTB 
SETS UP IAT TABLE. 

M2 0001 
M2 0002 
«2 0003 

COMMOH/TAPES/IHP.IOUT M2 0004 
COMMOH/PARMS/IPRIHT.IHIT M2 0005 
C0HM0H/AT0MS/H,X(5OO) ,Y(500) ,Z(500) ,ITYPE(500) ,HAME(50) ,VT(50)   H2 0006 
COHHOH/DLBERT/H,X(500),Y(SOO),Z(500),ITYPE(500), 

# HAME(50),WT(50) 
COMMOH/COHHECT/J J (500) , IAT(500,4) ,HCOHH (40) , ICOHH(40,16) ,        H2 0007 

1 HATTCH,JATTCH(500),KATTCH(500) M2 0008 
C0HM0H/CYCLC/IBUTA(15),IBUT,HCBTH,HPR0P M2 0009 

IHTEGER  ITYPE,HAME,JJ,IAT,HCOHH,ICOHH,JATTCH,KATTCH 
DIMEHSIOH IATJ(4),IDUM(4) 
IBF(I,J,K,L)=1000000*1+10000*J+100*K+L 

IDUM IS HERE TO SATISFY THE DEMAHDS OF SUBROUTIHE KSORT. 
IDUM(1)=0 

DO 170 J=1,H 
L=0 
DO 120 1=1,20 
IF (HCOHH(I).Eq.O) GO TO 120 
II=HCOHH(I) 
DO 110 K=1,II 
IF (ICOHH(I,K).HE.J) GO TO 110 
IF (K.EQ.l) GO TO 100 
L=L+1 
IATJ(L)=IC0NN(I,K-1) 

100 IF (K.EQ.II) GO TO 110 
L=L+1 
IATJ(L)=IC0NH(I,K+1) 

110 COHTIHUE 
IF (L.GE.4) GO TO 150 

120 COHTINUE 
DO 140 K=1,HATTCH 
IF (JATTCH(K).NE.J) GO TO 130 
L=L+1 
IATJ(L)=KATTCH(K) 
IF (L-4) 140,150,150 

130 IF (KATTCH(K).HE.J) GO TO 140 
L=L+1 

M2 0010 
M2 0011 
M2 0012 
M2 0013 
M2 0014 

M2 0015 
H2 0016 
M2 0017 
M2 0018 
M2 0019 
M2 0020 
M2 0021 
M2 0022 
M2 0023 
M2 0024 
M2 0025 
M2 0026 
M2 0027 
M2 0028 
M2 0029 
M2 0030 
M2 0031 
M2 0032 
M2 0033 
M2 0034 
M2 0035 
M2 0036 
M2 0037 
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IATJ(L)=JATTCH(K) M2 0038 
IF (L.GE.4) GO TO 150 M2 0039 

140 CONTINUE M2 0040 
150 JJ(J)=L M2 0041 

CALL KSORT(L,IATJ,IDUM) M2 0042 
DO 160 1=1,L M2 0043 

160 IAT(J,I)=IATJ(I) M2 0044 
170 CONTINUE M2 0045 

C SEARCH CYCLOPROPANE AND CYCLOBUTANE RINGS M2 0046 
NCBTN=0 M2 0047 
NPR0P=O M2 0048 
IBUT=0 M2 0049 
DO 180 1=1,10 M2 0050 
IBUTA(I)=0 M2 0051 

180 CONTINUE M2 0052 
DO 250 1=1,N M2 0053 
L1=JJ(I) M2 0054 
IF(Ll.LE.l) GO TO 250 M2 0055 
DO 240 111=1,LI M2 0056 
II=IAT(I,H1) M2 0057 
IF(I.GT.II) GO TO 240 M2 0058 
L2=JJ(II) M2 0059 
IFÜ.2.LE.1) GO TO 240 M2 0060 
DO 230 H2=1,L2 M2 0061 
III=IAT(II,M2) M2 0062 
IF( I.EQ.III) GO TO 230 M2 0063 
L3=JJ(III) M2 0064 
IF(L3.LE.l) GO TO 230 M2 0065 
DO 220 H3=1,L3 M2 0066 
IV=IAT(III,M3) M2 0067 
IF(IV.EQ.II) GO TO 220 M2 0068 
IFU.Eq.IV .AND. II.LT.III) GO TO 190 M2 0069 
GO TO 200 M2 0070 

190 NPR0P=NPR0P+1 H2 0071 
IBUT=1 H2 0072 
GO TO 220 M2 0073 

200 L4=JJ(IV) M2 0074 
IFQ.4.LE.1) GO TO 220 M2 0075 
HIN=MINO(I,II,III,IV) M2 0076 
IF(I.GT.MIN) GO TO 220 M2 0077 
DO 210 H4=1,L4 M2 0078 
I5=IAT(IV,H4) K2 0079 
IF(I5.EQ.III) GO TO 210 M2 0080 
IF(JJ(I5).LE.l) GO TO 210 M2 0081 
IF(I.NE.I5) GO TO 210 M2 0082 
IF( II.GE.IV) GO TO 210 M2 0083 
NCBTN=NCBTN+1 M2 0084 
IBUTA(NCBTN)=IBF(I,II,III, IV) M2 0085 
IBUT=1 M2 0086 

210 CONTINUE M2 0087 
220 CONTINUE M2 0088 
230 CONTINUE M2 0089 
240 CONTINUE M2 0090 
250 CONTINUE M2 0091 

IF(IBUT.EQ.O) RETURN M2 0092 
WRITE(I0UT,26O) M2 0093 

260 FORMAT(/6X,'THIS MOLECULE CONTAINS '/) M2 0094 
IF(NPROP.GT.O) WRITE(I0UT,27O) NPROP M2 0095 

270 F0RMAT(2OX,I2,' 3-MEMBERED RING(S) ') M2 0096 
IF(NCBTN.GT.O) WRITE(IOUT,280) NCBTN M2 0097 

280 FORMAT(20X,I2,' 4-MEMBERED RING(S) ) M2 0098 
IFCIBUT.EQ.2) WRITE(I0UT,290) CIBUTA(J),J=1,NCBTN) M2 0099 

290 FORMAT(/8X,'THE 4-MEMBED RINGS ARE :' /(18X,3(I8,3X))) «2 0100 
300 RETURN M2 0101 

END 
C 
c ********************************** 
c 

M2 0102 

*********************************** 
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SUBROUTINE THETA 

********************************************************************* 

SUBROUTINE THETA H2 0001 
THIS SUBROUTINE COMPUTES THE NUMBER OF BOND ANGLES (NTHETA) AND SETS M2 0002 
UP THE IAN6 ARRAY, WHERE IANG IS THE PACKED INTEGER IAIBICID. IA,IB,M2 0003 
IC, ft ID ARE THE ATOM NUMBERS OF THE ANGLE A-B-C AND ID IS A THIRD M2 0004 
ATTACHED ATOM FOR OUT-OF-PLANE BENDING.  NONPL IS THE NUMBER OF ANGLEM2 0005 
INVOLVED IN OUT-PL-BEND. 

C0MM0N/DLBERT/N,X(5OO),Y(500),Z(500),ITYPE(500),NAME(50),WT(50) 

COMMON/ATOMS/N,X(500),Y(500),Z(500),ITYPE(500),NAME(50),WT(50) 
COMMON/CONNECT/JJ(500),IAT(500,4) 
COMMON/THET/NTHETA,NONPL,IANG(650),KOUTP(50) 
INTEGER  ITYPE,NAME,JJ,IAT,M0UTP(5O) 

C OUT-OF-PLANE BENDING IF NON-ZERO 
DATA MOUTP/ 0, 2, 3, 0, 0, 0, 0, 0, 9, 0, 

1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
2 0, 0, 0, 0, 0, 0, 0, 0,29,30, 
2 0, 0, 0, 0, 0, 0,37,38,39,40, 
4          41, 0,43, 0, 0, 46, 0, 0, 0, 0/ 

IPACK(I,J,K,L)=256*(256*(256*I+J)+K)+L 

NELEMT=50 
DO 100 I=1,NELEHT 
IF(KOUTPQ).NE.O) GO TO 100 
K0UTP(I)=MOUTP(I) 

100 CONTINUE 
C 

NTHETA=0 
N0NPL=O 
DO 120 1=1,N 
IA=IAT(I,1) 
IB=IAT(I,2) 
IC=IAT(I,3) 
ID=IAT(I,4) 
IT=ITYPE(I) 

C IF KOUTP IS HOT ZERO,  SET IT=0 TO SIGNIFY THAT ALL X-I-Y 
C ANGLES WILL HAVE OUT-OF-PLAHE BENDING. 

IF(K0UTP(IT).NE.O .AND. ID.EQ.O) IT=0 
IF (IB.EQ.O) GO TO 120 
NTHETA=NTHETA+1 
CALL IPACK4(IANG(NTHETA),IA,I,IB,0) 

C  IF ALLENE LINKAGE (-2-4-2-) EXISTS, SET IANG NEGATIVE. 
IFUT.NE.4 .OR. ITYPE(IA).NE.2 .OR. ITYPE(IB) .NE.2) GO TO 110 
IANG(NTHETA)=-IANG(NTHETA) 

C IF ANGLE IS INVOLVED IN O-P-B, PUT THE THIRD ATOM ATTACHED TO I IN 
C IANG. 

110 IF (IT.EQ.O) IANG(NTHETA)=IANG(NTHETA)+IC 
IF (IC.EQ.O) GO TO 120 
NTHETA=NTHETA+1 
CALL IPACK4(IANG(NTHETA),IA,I,IC,0) 

C CHECK FOR O-P-B 
IF (IT.EQ.O) IANG(NTHETA)=IANG(NTHETA)+IB 
NTHETA=NTHETA+1 
CALL IPACK4(IANG(NTHETA),IB,I,IC,0) 

C CHECK FOR O-P-B 
IF (IT.EQ.O) IANG(NTHETA)=IANG(NTHETA)+IA 
IF (ID.EQ.O) GO TO 120 
NTHETA=NTHETA+1 
IANG(NTHETA)=IANG(NTHETA-1) 
CALL IPACK4(IANG(NTHETA-1),IA,I,ID,0) 
CALL IPACK4(IANG(NTHETA+1),IB,I,ID,0) 

M2 0006 
M2 0007 

M2 0008 
M2 0009 
M2 0010 
M2 0011 

-M2 0012 
M2 0013 
M2 0014 
M2 0015 
M2 0016 
M2 0017 
M2 0018 
-H2 0019 
M2 0020 
-M2 0021 
M2 0022 
H2 0023 
H2 0024 
M2 0025 
M2 0026 
M2 0027 
M2 0028 
M2 0029 
M2 0030 
H2 0031 
M2 0032 
M2 0033 
M2 0034 
M2 0035 
H2 0036 
M2 0037 
M2 0038 
H2 0039 
M2 0040 

M2 0042 
M2 0043 
H2 0044 
M2 0045 
M2 0046 
M2 0047 
M2 0048 
M2 0049 

M2 0051 
M2 0052 
M2 0053 

M2 0055 
M2 0056 
M2 0057 
M2 0058 
M2 0059 
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CALL IPACK4(IANG(NTHETA+2),IC,I,ID,0) 
HTHETA=HTHETA+2 M2 0063 

120 CONTINUE H2 0064 
130 IF (NTHETA.Eq.O) GO TO 150 M2 0065 
CONVERT THE IANG LIST (FOR ANGLE A-B-C) FROM ABCX TO XABC.          M2 0066 

DO 140 I=1,NTHETA H2 0067 
NCCC=0 H2 0068 
IF(IANGU).LT.O) NCCC=1 H2 0069 
CALL UNPACK4(IABS(IANG(I)),IA,IB,IC,ID) H2 0070 
IF (ID.NE.O) N0NPL=N0NPL+1 H2 0071 
CALL IPACK4(IANG(I),ID,IA,IB,IC) 
IF(NCCC.NE.O) IANG(I)=-IANG(I) H2 0073 

140 CONTINUE H2 0074 
150 RETURN H2 0075 

END H2 0076 

♦I******************************************************************* 

SUBROUTINE OHEGA 

*********************++************************************♦*******+* 

SUBROUTINE OHEGA 
COMPUTES THE NUMBER OF DIHEDRAL ANGLES (NOMEGA) AND THE NUMBERS OF 
THE 4 ATOMS DEFINING THE ANGLE, IOHG IS PACKED AS THE INTEGER 
IAIBICID AND FOR ALLENES, THE CENTRAL ATOM(C-SP) IS IGNORED, THEN 
PACKED FOR SUBROUTINE KOMEGA. 

C0MH0N/THET/NTHETA,N0NPL,IANG(65O),K0UTP(5O) 
COMMON/OMEG/ NOMEGA,IOMG(1040),KTB(1040) 

C    IPACK(I,J,K,L)=256*(256*(256*I+J)+K)+L 
C 

N0MEGA=1 
NN=NTHETA-1 
DO 300 1=1, NN 
CALL UNPACK4(IABS(IANG(I)),IDUM,IA,IB,IC) 
ICCC=0 
11=1+1 
DO 290 J=II,NTHETA 
IF(IAHGU).LT.O) GO TO 290 
CALL UNPACK4(IABS(IANG(J)),IDUM,JA,JB,JC) 
IF (IB.NE.JA) GO TO 130 
IF (IC.NE.JB) GO TO 110 

C OHEGA IA-IB-IC-JC (IB=JA ft IC=JB) 
C CHECK FOR THREEMEMBERED RING 

IF(IA.EQ.JC) GO TO 290 
IF(IANGU).GT.O) GO TO 100 
ICCC=1 
GO TO 180 

100 IF (IA.LE.JC) CALL IPACK4(I0HG(N0HEGA),IA,IB,IC,JC) 
IF (IA.GT.JC) CALL IPACK4(I0HG(N0HEGA),JC,IC,IB,IA) 
GO TO 170 

110 IF (IA.NE.JB) GO TO 290 
C OMEGA JC-IA-IB-IC (IB=JA ft IA=JB) 
C CHECK FOR THREEMEMBERED RING 

IF(JC.EQ.IC) GO TO 290 
IF(IANG(I).GT.O) GO TO 120 
ICCC=2 
GO TO 180 

120 IF (JC.LE.IC) CALL IPACK4(I0MG(N0MEGA),JC,IA,IB,IC) 
IF (JC.GT.IC) CALL IPACK4(I0MG(N0MEGA),IC,IB,IA,JC) 
GO TO 170 

130 IF (IB.NE.JC) GO TO 290 
IF (IC.NE.JB) GO TO 150 

C OMEGA IA-IB-IC-JA (IB=JC ft IC=JB) 
C CHECK FOR THREEMEMBERED RING 

M2 0001 
M2 0002 
M2 0003 
H2 0004 
H2 0005 
H2 0006 
M2 0007 
M2 0008 

H2 0009 
H2 0010 
H2 0011 
M2 0012 
M2 0013 
M2 0014 
M2 0015 
H2 0016 
H2 0017 
H2 0018 
H2 0019 
H2 0020 
H2 0021 
H2 0022 
H2 0023 
H2 0024 
M2 0025 
M2 0026 
M2 0027 

H2 0030 
H2 0031 
H2 0032 
H2 0033 
H2 0034 
H2 0035 
M2 0036 
M2 0037 

M2 0040 
M2 0041 
M2 0042 
M2 0043 
M2 0044 
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IF(IA.EQ.JA) GO TO 290 
IFttANG(I).GT.O) GO TO 140 
ICCC=3 
GO TO 180 

140 IF (IA.LE.JA) CALL IPACK4(I0MG(NOMEGA),IA,IB,IC,JA) 
IF (IA.GT.JA) CALL IPACK4(I0BG(H0MEGA),JA,IC,IB,IA) 
GO TO 170 

150 IF (IA.NE.JB) GO TO 290 
C OMEGA JA-IA-IB-IC (IB=JC ft IA=JB) 
C CHECK FOR THREEHEHBERED RIHG 

IF(JA.EQ.IC) GO TO 290 
IF(IAHGCI).GT.O) GO TO 160 
ICCC=4 
GO TO 180 

160 IF (JA.LE.IC) CALL IPACK4(I0MG(N0HEGA),JA,IA,IB,IC) 
IF (JA.GT.IC) CALL IPACK4(I0MG(N0HEGA),IC,IB,IA,JA) 

170 KTB(NOHEGA)=0 
B0HEGA=H0HEGA+1 
GO TO 290 

C FOR ALLEHES X-IA=IB=IC-Y, SET IOMG NEGATIVE AND PACKED WITH 
C X-IA=IC-Y. 

180 DO 280 K=1,HTHETA 
CALL UNPACK4(IABS(IANG(K)),IDUM,KA,KB,KC) 
GO TO (190,210,230,250),ICCC 
GO TO 280 

190 IF (I A. IE. KB) GO TO 280 
IF(JA.HE.KA) GO TO 200 
IF (KC.LT.JC) CALL IPACK4(-I0HG(N0MEGA),KC,IA,IC,JC) 
IF (KC.GT.JC) CALL IPACK4(-I0HG(N0MEGA),JC,IC,IA,KC) 
GO TO 270 

200 IF(JA.NE.KC) GO TO 280 
IF (KA.LT.JC) CALL IPACK4(-I0HG(N0MEGA),KA,IA,IC,JC) 
IF (KA.GT.JC) CALL IPACK4(-I0MG(H0MEGA),JC,IC,IA,KA) 
GO TO 270 

210 IF(IC.HE.KB) GO TO 280 
IF(IB.NE.KA) GO TO 220 
IF (KC.LT.JC) CALL IPACK4(-I0KG(N0MEGA),KC,IC,IA,JC) 
IF (KC.GT.JC) CALL IPACK4(-I0MG(N0HEGA),JC,IA,IC,KC) 
GO TO 270 

220 IF(IB.HE.KC) GO TO 280 
IF (KA.LT.JC) CALL IPACK4(-I0HG(N0MEGA),KA,IC,IA,JC) 
IF (KA.GT.JC) CALL IPACK4(-I0HG(N0MEGA),JC,IA,IC,KA) 
GO TO 270 

230 IF(IA.HE.KB) GO TO 280 
IF(JC.NE.KA) GO TO 240 
IF (KC.LT.JA) CALL IPACK4(-I0BG(H0MEGA),KC,IA,IC,JA) 
IF (KC.GT.JA) CALL IPACK4(-I0MG(N0MEGA),JA,IC,IA,KC) 
GO TO 270 

240 IF(JC.HE.KC) GO TO 280 
IF (KA.LT.JA) CALL IPACK4(-I0HG(N0MEGA),KA,IA,IC,JA) 
IF (KA.GT.JA) CALL IPACK4(-I0HG(N0MEGA),JA,IC,IA,KA) 
GO TO 270 

250 IF(IC.HE.KB) GO TO 280 
IF(JC.NE.KA) GO TO 260 
IF (KC.LT.JA) CALL IPACK4(-I0MG(H0HEGA),KC,IC,IA,JA) 
IF (KC.GT.JA) CALL IPACK4(-I0MG(N0MEGA),JA,IC,IA,KC) 
GO TO 270 

260 IF(JC.NE.KC) GO TO 280 
IF (KA.LT.JA) CALL IPACK4(-I0MG(N0HEGA),KA,IC,IA,JA) 
IF (KA.GT.JA) CALL IPACK4(-I0MG(N0HEGA),JA,IA,IC,KA) 

270 N0HEGA=B0MEGA+1 
280 CONTINUE 
290 CONTINUE 
300 CONTINUE 

N0HEGA=N0HEGA-1 
C SORT THE IOMG AND KTB ARRAYS. 

IF (NOHEGA.GT.l) CALL KS0RT(HOMEGA,IOHG,KTB) 

M2 0045 
«2 0046 
H2 0047 
H2 0048 

H2 0051 
H2 0052 
M2 0053 
H2 0054 
M2 0055 
H2 0056 
H2 0057 
H2 0058 

K2 0061 
H2 0062 
M2 0063 
H2 0064 
H2 0065 
M2 0066 
»2 0067 
H2 0068 

B2 0069 
H2 0070 
H2 0071 
M2 0072 

M2 0075 
M2 0076 

H2 0079 
H2 0080 
H2 0081 

H2 0084 
H2 0085 

M2 0088 
M2 0089 
M2 0090 

M2 0093 
H2 0094 

B2 0097 
H2 0098 
M2 0099 

H2 0102 
H2 0103 

M2 0106 
M2 0107 
H2 0108 
H2 0109 
H2 0110 
M2 Olli 
M2 0112 
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RETURN M2 0113 
EHD M2 0114 

C 
C ********************************************************************* 

c 
C SUBROUTINE HEAVY 
C 
C ********************************************************************* 

c 
SUBROUTIHE HEAVY(NAT,ITYPE,ZMASS) 

C 
IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
DIMENSION ITYPE(*),ZMASS(*) 
DIMENSION AMS(106) 

C 
C   ASSIGN NUCLEAR BASSES BASED ON NUCLEAR CHARGE 
C 
c .  
C   THIS IS THE ATOMIC MASS TABLE FROM GAMESS VIBANL. SRC 
C 

DATA (AMS(I),I=1,54) / 
* 1.007825D+00,4.0026D+00,7.01600D+00,9.01218D+00,11.00931D+00, 
* 12.OD+00,14.00307D+00,15.99491D+00,18.99840D+00,19.99244D+00, 
* 22.9898D+00,23.98504D+00,26.98153D+00,27.97693D+00, 
* 30.97376D+00,31.97207D+00,34.96885D+00,39.948D+00, 
* 38.96371D+00,39.96259D+00,44.95592D+00,47.90D+00,50.9440D+00, 
* 51.9405D+00,54.9381D+00,55.9349D+00,58.9332D+00,57.9353D+00, 
* 62.9298D+00,63.9291D+00,68.9257D+00,73.9219D+00,74.9216D+00, 
* 79.9165D+00,78.9183D+00,83.9115D+00, 
* 84.9117D+00,87.9056D+00,89.9054D+00,89.9043D+00,92.9060D+00, 
* 97.9055D+00,97.OD+OO,101.9037D+00,102.9048D+00,105.9032D+00, 
* 106.9041D+00,113.9036D+00,114.9041D+00,119.9022D+00, 
* 120.9038D+00,129.9067D+00,126.9044D+00,131.9042D+00/ 
DATA (AHS(I),1=55,106) / 

* 132.9054D+00,137.9052D+00,138.9063D+00,139.9054D+00, 
* 140.9076D+00,141.9077D+00,144.9127D+00,151.9197D+00, 
* 152.9212D+00.157.9241D+00,158.9253D+00,163.9292D+00, 
* 164.9303D+00,165.9303D+00,168.9342D+00,173.9389D+00, 
* 174.9408D+00,179.9465D+00,180.9480D+00,183.9509D+00, 
* 186.9557D+00,191.9615D+00,192.9629D+00,194.9648D+00, 
* 196.9665D+00,201.9706D+00, 
* 204.9744D+00,207.9766D+00,208.9804D+00,208.9824D+00, 
* 209.9871D+00,222.0176D+00, 
* 223.0197D+00,226.0254D+00, 
* 227.0278D+00,232.0381D+00,231.0359D+00,238.0508D+00, 
* 237.0482D+00,244.0642D+00,243.0614D+00,247.0703D+00, 
* 247.0703D+00.251.0796D+00,252.0829D+00,257.0751D+00, 
* 258.0986D+00,259.1009D+00,260.1053D+00,261.1087D+00, 
* 2*0.OD+00/ 

c  
C 

DO 10 I=1,NAT 
10        ZMASS(I)=AMS(ITYPE(D) 

C 
C 

RETURN 
END 

C 
C ********************************************************************* 

c 
C SUBROUTINE KSDRT 
C 
C ********************************************************************* 

c 
SUBROUTINE KSORT(NK,K,KK) M2 0001 

C SORTS THE K-ARRAY IN ASCENDING ORDER.  IF THE FIRST ELEMENT OF THE M2 0002 
C KK-ARRAY IS NOT ZERO, IT IS SORTED ACCORDING TO K.  CALLED BY OMEGA M2 0003 

DIMENSION K(1),KK(1),KT(1040) M2 0004 
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INTEGER  H(1040),SIGN(1040) 
TRANSFER R ID KT, THE TEMPORARY STORAGE ARRAY; SET ALL 1=1. 

DO 100 1=1,NK 
SIGN(I)=IABS(K(I))/K(I) • 
KT(I)=K(I)*SIGN(I) 

100 N(I)=1 
CALCULATE THE RANK FOR EACH ENTRY IN KT 

B=NK-1 
DO 130 1=1,M 
J=I+1 
DO 130 L=J,NK 
IF(KT(I).GT.KT(D) GO TO 120 

110 N(L)=N(L)+1 
GO TO 130 

120 N(I)=N(I)+1 
130 CONTINUE 

H2 0005 
M2 0006 
M2 0007 
H2 0008 
«2 0009 
H2 0010 
H2 0011 
H2 0012 
H2 0013 
H2 0014 
H2 0015 
M2 0016 
M2 0017 
H2 0018 
M2 0019 
H2 0020 

RESTORE THE K-ARRAY. THE VALUE OF N FOR EACH ENTRY IN KT BECOMES THEM2 0021 
SUBSCRIPT OF THIS ENTRY IN THE K-ARRAY. M2 0022 

DO 140 1=1,NK M2 0023 
140 K(N(I))=KTU)*SIGN(I) M2 0024 
IF KK(l).HE.O, REARRANGE THIS ARRAY TO CORRESPOND TO K. M2 0025 

IF (KK(l).EQ.O) GO TO 170 M2 0026 
DO 150 1=1,NK M2 0027 

150 KT(I)=KK(I) M2 0028 
DO 160 1=1,NK M2 0029 

160 KK(N(I))=KT(I) M2 0030 
170 RETURN M2 0031 

END 

********************************************************************* 

FUNCTION IPACK4 

********************************************************************* 

INTEGER FUNCTION IPACK4(M,I,J,K,L) 
M=215*(215*(215*I+J)+K)+L 
RETURN 
END 

********************************************************************* 

SUBROUTINE UNPACK 

********************************************************************* 

SUBROUTINE UNPACK4(B,I,J,K,L) M2 0001 
M = 215**3*1 + 215**2*J + 215*K + L                            M2 0002 
LL=M/215 M2 0003 
L=M-LL*215 M2 0004 
KK=LL/215 M2 0005 
K=LL-KK*215 M2 0006 
I=KK/215 M2 0007 
J=KK-I*215 M2 0008 
RETURN M2 0009 
END M2 0010 
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Appendix E.   Program Modifications for the IMMOM: GAMESS and MMS 

E.l    Overview 

The following is a compilation of the changes made to GAMESS and MM3 in order to 
perform a hybrid ab initio/MM geometry optimization. The following subroutines required 
source code modifications: 

GAMESS 
Module gamess.S.f 
Module inputa.S.f 
Module inputc.S.f 
Module statpt.S.f 
Module statpt.S.f 

• MM3 

Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 
Module 

mm3^aix.f 
mm31.S.f 
mm31.S.f 
mm31.S.f 
mm31.S.f 
mvib31.S.f 
mvib31.S.f 
mvib31.S.f 
mvib31.S.f 
mvib31.S.f 
mvib31.S.f 
mvib31.S.f 
mvib31.S.f 
mvib31.S.f 
mvib32.S.f 
mvib32.S.f 
mvib32.S.f 
mvib32.S.f 
mvib32.S.f 
mvib32.S.f 
mvib32.S.f 
mvib32.S.f 

Deck MAIN 
Deck START 
Deck MBLDR 
Deck SIGINI 
Deck SIGVAL 

COMMON.PAR 

SUBMM3 
subroutine parti 
subroutine part2 
subroutine part3 
subroutine fmin 
subroutine fmove 
subroutine fd_rth 
subroutine fd_ebend 
subroutine fd_theta 
subroutine fd_opbl 
subroutine fd_opb2 
subroutine fd_opb3 
subroutine fd_ebbnd 
subroutine fd_vdwbd 
subroutine fd_vdwod 
subroutine fd_chgchg 
subroutine fd_dipole 
subroutine fd_chgdip 
subroutine fd_dipchg 
subroutine fd_etors 
subroutine fd.cosw 

• NEW MODULES CREATED 

GHMM3.3.f 

• Deconfliction of GAMESS-MM3 common and sub names 

In addition, a large number of the MM3 subs had to have COMMON blocks renamed, 

as there were conflicts between named COMMON blocks in MM3 and subroutine names 

in GAMESS, and vice versa.   In addition, GAMESS and MM3 had several subroutines 
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with the same names. In order to minimize the changes to GAMESS, the conflicting MM3 

named COMMONS and subs were renamed. 

E.2    GAMESS Source Code Modifications 

NOTA BENE: All line numbers are approximate. 

E.2.1    MAIN Module gamess.S.f.     Not many modifications needed here. Be careful 

when using Hollerith variables. They can be tricky in comparison 

263 c 
264 C     ADDITIOH 8 OCT 96 JRS 
265 DATA HYBRID /8HHYBRID / 
266 C 

449 C 
450 C    JRS HEW RUNTYP 8 OCT 96   
451 C       IF RUHTYP.EQ.'HYBRID ', MIXED GAMESS MM3 OPTIMIZATION 

475 C 
476 IF(RUHTYP.EQ.HYBRID) CALL SIGX(.FALSE.) 
477 C 

E.2.2   Deck START Module Sinputa.S.f.     Have to add RUNTYP=HYBRID when 

you read the SCONTRL card. 

2165 C ADDED 8 OCT 96 
2166 DATA HYBRID /8HHYBRID / 
2167 C 

2301 IF(RUHTYP.EQ.PROP)  0K=.TRUE. 
2302 C  HEW OPTIOH ADDED 8 OCT 96 JRS 
2303 C 
2304 IF(RUHTYP.EQ.HYBRID)  0K=.TRUE. 
2305 C 
2306 IF(.HOT.OK) THEH 
2307 IF (HASWRK) WRITE(IW,9010) >RUHTYP>,RUHTYP 
2308 HERR = HERR+1 
2309 EHD IF 

E.2.3 Deck MBLDR Module inputc.S.f . It makes more sense to use the Prin- 

cipal Axes that define the large molecule, the ab initio and molecular mechanics portions 

together, as the common reference frame for the calculation. GAMESS would normally 

convert to the PrinAxes frame of the ab initio piece, whose cartesian coordinates would 

then be inconsistent with the cartesian coordinates of the entire system shifted to its Pri- 

nAxes frame by MM3. The easy way around this problem is to diable the conversion to 

the PrinAxes frame in GAMESS for RUNTYP=HYBRID. Another way around this is to 

use COORD=UNIQUE in $CONTRL card, which also bypasses the Principal Axis trans- 

formation This conversion is accomplished in GAMESS module Sinputc.f Deck MBLDR. 

E-2 



79 C 
80 C   8 OCT 96 JRS ADDED THE FOLLOWING COMMON AND DATA   
81 C 
82 COMMON /RUNOPT/ RUNTYP,EXETYP,NEVALS 
83 DATA HYBRID /8HHYBRID / 
84 C   

162 C 8 OCT 96 JRS FOR RUNTYP=HYBRID, TRANSLATING THE COORDINATES TO THE 
163 C PRIN AXIS FRAME WILL CAUSE INCONSISTENCY WITH THE MM3 PART OF THE 
164 C CALCULATION 
165 IF(RUNTYP.EQ.HYBRID) GOTO 333 
166 CALL PRAXIS(CORD,AZNUC,NAT,HXATH,IXX,IYY,IZZ) 
167 IF (MASWRK) WRITE(IW,9020) IXX,IYY,IZZ 
168 C 
169 333 CONTINUE 

E.2.4 Deck SIGINI Module statpt.S.f. Modifications to SIGINI mainly involve 

intializing some parameters for the GAMESS optimization routine and calling ghmm2 to 

intialize the MM3 input and read in the variables needed for the linking process. 

3926 C 
3927 DATA HYBRID /8HHYBRID / 
3928 C 

4021 C 
4022 IF(RUNTYP.EQ.HYBRID) DXMAXT=0.1D+00 
4023 C 

4032 C 
4033 IF (RUNTYP. EQ. HYBRID) UPHESS=BFGS 
4034 C 

4076 C  FOR RUNTYP=HYBRID, READ AND VERIFTY $MM3 DATA 
4077 C 
4078 C 
4079 C CALLING WITH 0 MEANS INITIALIZATION ONLY 
4080 C 
4081 IF(RUNTYP.EQ.HYBRID) CALL GHMM3(0) 

E.2.5 Deck SIGVAL Module statpt.S.f. Modifications to SIGVAL were minor, 

mainly adding a call to ghmm2(l) for RUNTYP=HYBRID. I had to change the SUB- 

ROUTINE statement itself to resolve a conflict 

• Line 4199: Subroutine Statement We need RUNTYP for optional call to ghmm2 for 
RUNTYP .EQ. HYBRID. Since the variable RUNTYP is contained in COMMON 
/RUNOPT/, which also contains EXETYP I had to change the subroutine statement 
to avoid an inconsistent common block compile time error. I.e., you can't pass a 
variable in a CALL if you also include the COMMON block in which that same 
variable resides in the same subroutine. 
4194 C 13 JUL 96 JRS 
4195 C ORIGINAL CODE LINE 
4196 C     SUBROUTINE SIGVAL(EXETYP,NCOORD,METHOD,NPRT) 
4197 C NEW CODE LINE 
4198 C 
4199 SUBROUTINE SIGVAL(SHOEDM,NCOORD,METHOD,NPRT) 

4235 C 13 JUL 96 JRS COMM0N/RUN0PT/ ADDED FOR HYBRID RUN OPTION 
4236 C 
4237 COMMON /RUNOPT/ RUNTYP,EXETYP,NEVALS 
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Addition of MM3 Contribution to the GAMESS Gradient This call to ghmm2 drives 
an MM3 optimization of the entire hybrid system with the appropriate ab initio 
atoms restricted in MM3. The final gradient contributions to the ab initio internal 
coordinates (with the appropriate MM3 gradient contributions neglected) are added 
to the GAMESS gradient in internal coordinates. The Cartesian coordinates for the 
system, hence the ab initio piece, change as a result of the MM3 optimization. There- 
fore, new B and B Inverse matrices are calculated for the new ab initio coordinates 
before control is passed back to GAMESS. (New values of the internal coordinates 
are generated when the B matrix is calculated.) 
4172 C 8 OCT 96 JRS 
4173 C HEED EXETYP AND RUHTYP, SO CALL EXETYP A SHOE DUMMY AHD USE 
4174 C COMMON /RUHOPT/ TO PASS THE VALUES 
4175 C 
4176 C ORIGINAL CODE LINE 
4177 C     SUBROUTINE SIGVAL(EXETYP,NCOORD,METHOD,NPRT) 
4178 C —NEW CODE LINE 
4179 C 
4180 SUBROUTINE SIGVAL(SHOEDH,NCOORD,METH0D,NPRT) 

4217 C 
4218 C 8 OCT 96 JRS COMMON/RUNOPT/ ADDED FOR HYBRID RUN OPTION 
4219 C 
4220 COMMON /RUNOPT/ RUHTYP,EXETYP,HEVALS 
4221 C 
4222 DATA HYBRID /8HHYBRID / 

4359 C    8 OCT 96 JRS 
4360 C    FOR RUNTYP=HYBRID, CALL GHHM3 TO GET THE HH3 COHTRIBUTIOH TO THE 
4361 C    ENERGY AND GRADIENT BEFORE RETURNING TO THE OPTIMIZATION 
4362 C 
4363 C   NOTA BEHE: THE GRADIEHT HERE IS THE CARTESIAH GRADIEHT !!!!!! 
4364 C 
4365 C  THIS MEAHS I HAVE TO USE THE HORMAL GAMESS ROUTIHES TO CONVERT THIS 
4366 C  GRADIENT TO A GRADIENT IN INTERHALS IH GHMM3 AS HELL AS CONVERTING THE 
4367 C  HM3 CARTESIAH GRADIEHT TO IHTERHALS 
4368 C 
4369 C 
4370 IF(RUHTYP.EQ.HYBRID) CALL GHHH3(1) 
4371 C 

E.3   MM3 Source Code Modifications 

Most of the modified portions of the MM3 source code are prefaced by: 

c    gam2mm 

The modifications can be located by doing a grep on gam2mm. 

E.3.1 COMMON.PAR. The default number of atoms that can be used in the 

"Full Matrix" optimization scheme, i.e., the technique that minimizes the gradient, is 120, 

too small for the bulk clusters considered in this work. In addition, because of the large 

number of internal coordinates that can be defined for large cage molecules, the number 

of angles and torions was also increased. 
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1 C        ((( MM3 ))) 
2 C   ASSIGNMENT OF MAXIMUM NUMBERS 

3 C   MAXATOM=MAXIMUM ATOM NUMBER 

4 C   MAXTYPE=MAXIMUM NUMBER OF ATOM TYPE 

5 PARAMETER (MAXAT0M=700,MAXTYPE=200) 

6 C 
7 C   MAXVALC=MAXIMUM NUMBER OF VALENCE BOND 

8 PARAMETER (MAXC0NN=150,MAXVALC=6) 

9 PARAMETER (MAXCYC4=54,MAXCYC5=20) 

10 c 
11 c ==================================== 

12 c 21 Apr 97 JRS bumped up maxtors 

13 c 
14 c     PARAMETER (MAXTORS=2800,MAXNTC=1750,MAXTOST=50) 

15 PARAMETER (MAXT0RS=6000,MAXNTC=1750,MAXT0ST=50) 

16 c ==================================== 

17 C 
18 C   MAXPAIR=ATOM PAIRS IN THE SYSTEM 
19 C =MAXAT0M*(MMAXAT0M-l)/2 

20 PARAMETER (MAXB0ND=840,MAXPAIR=244650) 

21 PARAMETER (MAXBC0=30,MXAN0M=100) 

22 C 
23 C   MAXIMUM NO OF PRIMARY AND SECONDARY ELECTROEGATIVITY PARAMETERS 

24 PARAMETER (MXPREL=120,MAXSEL=30) 

25 C 
26 C   MAXVANG=NUMBER OF ANGLES ON MAXVALC BONDED ATOM 

27 C =MXVANG2/2 

28 C 
29 C   MXVANG2=NUMBER OF ANGLE COMBINATION ON MAXVALC 

30 C =MAXVALC*(MAXVALC-1) 
31 PARAMETER (MAXANGL=1680,MAXVANG=15,MXVANG2=30) 

32 C 
33 C   MAXV4=MAXIMUM NUMBER OF 4-CORRDINATION BOND ANGLE PARAMETERS 
34 C   MAXV5=MAXIMUM NUMBER OF 5-C0RRDINATI0N BOND ANGLE PARAMETERS 
35 C   MAXV6=MAXIMUM NUMBER OF 6-C0RRDINATI0N BOND ANGLE PARAMETERS 
36 PARAMETER (MAXVT4=100,MAXVT5=100,MAXVS5=100,MAXVT6=100) 

37 C   MAX NUMBER OF STRETCH-BENDING AND OUT-OF-PLN BENDING 

38 PARAMETER (MAXSTBN=25,MAX0UTP=120) 
39 PARAMETER (MAXHYBD=100,MAXCHG=200) 

40 C   MAXPATOM=MAXIMUM NUMBER OF PI-ATOM 
41 PARAMETER (MAXPATM=100,MAXPBND=140,MAXPT0R=560) 

42 C   MAXROT=HALF OF MAXATOM 
43 C   MAXDRIV=MAXIMUM NUMBER OF DIHEDRAL ANGLE FOR DRIVER 
44 PARAMETER (MAXR0T=350,MAXDRIV=10) 

45 C  
46 c   The following PARAMETER statments are used in lull matrix method 

47 c   subroutines (MVIB part) 

48 c 
49 c   MXFATOM = max number of atoms that full matrix method can handle. 

50 c   MXVIB1 = MXFATOM * 3 + 6 

51 c   MXVIB2 = MXVIB1 * (MXVIB1 + 1) / 2 

52 c   MXVIB3 = MXVIB1 * 5 

53 c   MXVIB4 = MXVIB1 - 10 

54 c 
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55 c eg. if the maximum number of MXFATOM is 120, then the other 

56 c parameters will be calculated as the following... 

57 c 
58 c PARAMETER (MXVIB1=246,MXVIB2=30381>MXVIB3=1230,MXVIB4=236) 

59 c 

61 c 21 Apr 97 JRS bumped up MXFATOM 

62 c 
63 c    PARAMETER (MXFATOM = 120) 

64 PARAMETER (MXFATOM = 400) 
65 c =============================== 

66 PARAMETER (MXVIB1 = MXFATOM * 3 + 6) 

67 PARAMETER (MXVIB2 = MXVIB1 * (MXVIB1 + 1) / 2) 

68 PARAMETER (MXVIB3 = MXVIB1 * 5) 

69 PARAMETER (MXVIB4 = MXVIB1 - 10) 

E.3.2 Module mmS^aix.f . MM3 uses some system calls for timing, etc, that 

are not supported under AIX. This module contains a few functions to convert the more 

standard UNIX system calls to the AIX equivalents. For Sun UNIX, I wrote a module 

mm3j3un.f that uses the standard UNIX calls.On an IBM SP2, you need to use mm3-aix 

E.3.3   Module mmSLS.f SUBMM3 . 

12 C     PROGRAM MH3 
13 SUBROUTINE HH3(INPUT, IOUTPUT, IR0AD) 

76 C gam2mm 
77 C I/O unit assignments consistent and deconflicter with GAMESS 
78 IHP=IHPUT 
79 IRD=IHPUT 
80 I0UT=I0UTPUT 
81 C 
82 C  HEW Unit assignment for K0NST.MM3 file 
83 C 
84 C  Will need to redo reading of K0NST.MM3 file 
85 C  Put K0NST.MM3 in same location as executables 
86 C 
87 IT12=32 
88 OPEN(UNIT=IT12,FILE='"/Bin/KOHST.HH3',STATUS= > OLD') 
89 c     REWIHD(IT12) 
90 C 
91 C Lot's of stuff deleted as i don't need a lot of diferent options 
92 C 
93 C MOVE CONTROLS THE OPTIMIZATION METHOD 
94 C M0VE=2 MEANs BLOCK FIRST, THEN FULL MATRIX MINIMIZATION 
95 C THEN FULL MATRIX MINIMIZATION 
96 c move=3 means full matrix from the get go 
97 c 
98 c imove is in the file COMMON.PAR, read in at Link Time 

63 c gam2mm 
164 C — BEGIN SEQUENCE 
165 C I ONLY WANT TO MAKE ONE CALCULATION, NOT KEEP LOOPING FOREVER 
166 C 
167 800 CONTINUE 
168 C 
169 C IR0AD=0 READ MM3 PART OF INPUT FILE AND CHECK FOR ERRORS ONLY 
170 C IR0AD=1 DO Optimization 
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171 C 
172 IF CIROAD.EQ.O) THEN 
173 CALL PARTI 
174 WRITECIOUT,*)' HO ERRORS FOUND IN HM2 INPUT FILE ' 
175 c 
176 c nriteCiout,*) 
177 c nriteCiout,*) ' x y z in mm3 before we return ' 
178 c do 667 jjj=l,n 
179 c nriteCiout,*) xCjjj),yCjjj),zCjjj) 
180 c 667   continue 
181 RETURN 
182 ELSE IF (IROAD.EQ.l) THEN 
183 CALL PART2 
184 CALL PART3 
185 END IF 
186 C 
187 WRITE(IOUT,810) 
188 810 FORHATC/'   MM optimization of Region 4 Complete  ') 
189 RETURN 

E.3.4    Module mmSl.S.f subroutine parti . 

296 c gam2mm 
297 c hard set tmax at an extremely large value 
298 c tmax entered im nimutes 
299 c 
300 tmax=1440. 
301 THAX=THAX*60. 

464 c 
465 c gam2mm 
466 c fmin and fmove modified to enable use of RESTRICTED atom motion 
467 c 
468 c 
469 c IF (HOVE.EQ.l.AND.BRSTR.NE.O) WRITE (I0UT.510) 
470 c 510 FORMATClOX.'THE MOTION OF SOME ATOMS IS RESTRICTED.') 
471 c IF (H0VE.GE.2.AND.HRSTR.NE.O) WRITE (I0UT.515) 
472 c 515 FORMATClOX.'THE RESTRICTED MOTION OPTION IS DISABLED.') 
473 c 
474 c 
475 nriteCiout,*) 
476 nriteCiout,511) 
477 nriteCiout,510) 
478 510 formatC25X,' HYBRID OPTIMIZATION',/,15X, 
479 #  'RESTRICTED MOTION FOR FULL DIAGONAL METHOD ADDED') 
480 nriteCiout,511) 
481 511 formatCl5X,50C'=')) 
482 c 
483 c 

620 c gam2mm 
621 c Restricted motion for full matrix CM0VE=2,4) added 
622 c 
623 c 830 IF CH0VE.GE.2) GO TO 870 
624 830 continue 

751 c gam2mm 
752 c 
753 goto 960 
754 IFCNH.Eq.O) GO TO 960 
755 IFCNDRIVE.NE.O) GO TO 940 
756 HFORM=IABSCHFORM)+NH*10 
757 GO TO 960 
758 C WHEN DRIVER IS USED, IF HEAT PARAMETERS ARE READ IN, HEAT WILL NOT 
759 C BE CALCULATED. 
760 940 DO 950 K=1,NH 
761 950 READCNRD,250) IDUM 

E-7 



762 HF0RM=O 
763 C 
764 C PRINT ENERGY EQUATIONS; CALC AND PRINT INITIAL ENERGY AND GEOHETRY. 
765 C GENERALLY, IF INIT=1 ENERGY IS PRINTED; IF INIT=0 IT"S OMITTED. OVER 
766 C RIDING THIS IS IPRINT=2 (ALWAYS PRINT) AND IPRINT=1 (LIMIT VDW PRINT) 
767 C SET UP IPR SUCH THAT 0=NO PRINT, 1= PRINT BUT LIMIT VDW, 2=PRINT ALL. 
768 C IPRINT=5 ALLOWS TO PRINT BEND-BEND INTERACTION PAIRS. 
769 c 
770 
771 960 IPR=2*INIT 

938 c 
939 c gamm3 
940 c we'll never have more that one data deck per file, so we always 
941 c return here 
942 c     IF(INIT.EQ.O) GO TO 1290 
943 RETURN 
944 c 
945 c 
946 C 
947 C — NEW DATA DECK ================================================= 
948 

E.3.5    Module mmSl.S.f subroutine part2 . 

1063 c 
1064 c gam2mm 
1065 c 
1066 move=2 
1067 c 

1195 c 
1196 c gam2mm skip this bit 
1197 c 
1198 goto 666 
1199 C STORE NEW COORDINATES IN TAPE9 AND HOVE ON TO PART3 MM3 0164 
1200 C     DO 210 1=1, N HM3 0165 
1201c     WRITE(IPN,200) X(I) ,Y(I) ,Z(I) ,CTYPE(I) ,ITYPE(I) ,1 MM3 0166 
1202 c 200 FORMAT(3F10.5,A2,I3,'(',I3,')') MM3 0167 
1203 c 210 CONTINUE MM3 0168 
1204 c 
1205 666 continue 
1206 C 

E.3.6    Module mmSl.S.f subroutine parts 

1403 c 
1404 c gam2mm: The next 75 lines or so are commented out. 
1405 c This is »here the energy from EVERY interaction term is 
1406 c written to the output file. This part is skipped to reduce 
1407 c the size of the output file 
1408 C write(iout,570) 
1409 C call total 
1410 c 
1411 c Notice the next 75 lines or so are commented out 

1546 c gam2mm 
1547 c 
1548 c write(iout,*)' Right before UNIT changes commented out' 
1549 c I had to change a file assignment from 12 to 32 in EHEAT 
1550 c to get this call to work 
1551 c 
1552 INP=NRD 
1553 c IF (HFORM.NE.O) CALL EHEAT 
1554 INP=IRD 
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1555 c 

1586 c 
1587 c gam2mm Don't write HM3.TAPE9 file 
1588 c 
1589 goto 999 
1590 C 
1591 C STORED IN TAPE9 '  
1633 c gam2mm 
1634 999 continue 
1635 RETURN 
1636 END 

E.3.7   Module mm3l.S.f subroutine Davejr. 

5521 c gam2mm This fixes problem with reassignment of IOUT somewhere in loop 

5522 c 
5523 ioutgam=iout 

5921 c gam2mm: Fix reassignment of Unit IOUT 
5922 c 
5923 iout=ioutgam 

6025 c 
6026 c gam2mm Disable HM3 time checking. Hard Set limit above 
6027 c 
6028 IF(DELCPU.LT.CPULEFT ) GO TO 340 
6029 c 

E.3.8    Module mvib3l.S.f subroutine fmin .      Changes to Maseras' version of fmin 

117 c — gam2mm  Hen COHHONS for merging with GAHESS 
118 C 
119 COMMON /FORCMM/ gradmm(750) 
120 COHMON /NREGNS/ NREGN1,HREGN2,NREGN3,NREGII4,NREGN5 
121 COHMON /IREGNS/ IREGNK50) ,IREGN2(50) ,IREGN3(50) , 
122 # IREGN4(500),IREGN5(250) 
123 COHMON /MM2PAX/ XC0HH2,YC0HH2,ZC0HH2,XFPAM2(3,3) 
124 c 
125 INTEGER NREGN1,NREGN2,NREGN3,NREGN4,NREGH5 
126 INTEGER IREGN1,IREGN2,IREGN3,IREGN4,IREGN5 
127 REAL*8 XC0HM2,YC0HH2,ZC0KH2,XFPAH2 
128 C 

234 c 
235 c gam2mm Disable time limit checking by setting tieft large 
236 c 
237 c original code line 
238 c tieft     = tmax - cpusec 
239 tleft= 9999999.0 
240 c 

547 c gam2mm 
548 c JRS I use a 1-d array for the vector 
549 c 
550 c do 3010 ii= l.natom 
551 c iil= 1 + 3*(ii-l) 
552 c ii2= iil + 1 
553 c ii3= iil + 2 
554 c xg(ii)= ff(iil) 
555 c yg(ii)= ff(ii2) 
556 c zg(ii)= ff (Ü3) 
557 c 3010  continue 
558 c 
559 do 3010 ii=l,3*natom 
560 gradmm(ii)=ff(ii) 
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561 3010 continue 

887 c gam2mm JRS Do this in interface module, not here 
888 C Prints gradient 
889 c xgt= 0. 
890 c ygt= 0. 
891 c zgt= 0. 
892 c Hrite(iout,902) 
893 c 902 format(2x,'FINAL ATOMIC GRADIENT') 
894 c do 908 ii= l.natom 
895 c xgt= xgt+xg(ii) 
896 c ygt= ygt+yg(ii) 
897 c zgt= zgt+zg(ii) 
898 c urite(iout,905) xg(ii),yg(ii),zg(ii) 
899 c 905 format(2x,3f20.10) 
900 c 908 continue 
901 c write(iout,909) xgt.ygt.zgt 
902 c 909 format(2x,'SUM OF GRADIENTS PER COMPONENT' ,/,2x,3f20.10) 
903 c 
904 c 

E.3.9   Module mvibSl.S.f subroutine fd-estr . 

989 c 
990 C 
991 
992 
993 
994 
995 
996 c 
997 
998 
999 
1000 C 

Neu COMMONS for merging with GAMESS 

COMMON /FORCMM/ gradmm(750) 
COMMON /HREGNS/ NREGN1,NREGN2,NREGN3,NREGN4,NREGN5 
COMMON /IREGNS/ IREGNK50) ,IREGN2(50) ,IREGN3(50) , 

* IREGN4(500),IREGH5(250) 
COMMON /MM2PAX/ XC0MH2,YC0MM2,ZC0MH2,XFPAM2(3,3) 

INTEGER NREGN1,HREGN2,NREGN3,NREGN4,NREGN5 
INTEGER IREGN1,IREGH2,IREGN3,IREGN4,IREGN5 
REAL*8 XC0MM2,YC0MM2,ZC0MM2,XFPAM2 

1016 c== 
1017 c 
1018 c 
1019 
1020 
1021 
1022 c 
1023 c 
1024 
1025 c 
1026 

1087 

gam2mm Add term IFF imvd or ib in Region 4 

do 800 igam=l,nregn4 
ikeep=iregn4(igam) 

800     if ((ikeep.eq.imvd) .or. (ikeep.eq.ib)) goto 810 

Only get here when neither imvd nor ib in Region 4 
goto 10 

810 continue 

10 continue 

E. 

E. 

1233 C 
1234 C 
1235 
1236 
1237 
1238 
1239 
1240 c 
1241 
1242 

3.10 Module mvib3l.S.f subroutine fmove . 

3.11 Module mvibSl.S.f subroutine fd^ebend 

  New COMMONS for merging with GAMESS — 

COMMON /FORCMM/ gradmm(750) 
COMMON /NREGNS/ NREGN1,NREGN2,NREGN3,NREGN4,NREGN5 
COMMON /IREGNS/ IREGNl(SO),IREGN2(50),IREGN3(50), 

9 IREGN4(500),IREGN5(250) 
COMMON /MH2PAX/ XC0MM2,YC0MM2,ZC0MM2,XFPAH2(3,3) 

INTEGER NREGN1,NREGN2,NREGN3,NREGN4,NREGN5 
INTEGER IREGN1,IREGN2,IREGN3,IREGN4,IREGN5 

E-10 



1243 REAL*8 XC0HH2,YC0HH2,ZC0HB2,XFPAH2 
1244 C   

TYPE 2 angles 

1311 c gam2mm: If ia,ib,ic,id NOT in Region 4, don't add derivative 
1312 c 
1313 c 
1314 do 800 igam=l,nregn4 
1315 ikeep=iregn4(igam) 
1316 800     if ((ikeep.eq.ia) .or. (ikeep.eq.ib) .or. (ikeep.eq.ic) .or. 
1317 #     (ikeep.eq.id)) goto 810 
1318 c 
1319 c Only get here when none of ia,ib,ic,id is in Region 4 
1320 goto 820 
1321 c 
1322 810 continue 
1323 c 
1324 c Temporary Diagnostic 
1325c     write(iout,*) 'called fd_opb2 ',ia,ib,ic,id 
1326 c   
1327 c 
1328 call fd_opb2 (i4,ia,ib,ic,id,constl.const,const2,imin) 
1329 iopbc=l 
1330 endif 
1331 endif 
1332 c 
1333 820 continue 

1338 c gam2mm: If ib or imvd or ic HOT in Region 4, don't add derivative 
1339 c 
1340 c 
1341 do 830 igam=l,nregn4 
1342 ikeep=iregn4(igam) 
1343 830     if ((ikeep.eq.ib) .or. (ikeep.eq.imvd) .or. (ikeep.eq.ic)) 
1344 #    goto 840 
1345 c 
1346 c Only get here when neither ib.imvd, nor ic in Region 4 
1347 goto 30 
1348 c 
1349 840 continue 

1456 c      end of stretch-bend derivatives   
1457 30 continue 

TYPE 1 AHGLES 

1585 c   
1586 c gam2mm: If ia,ib,ic,id HOT in Region 4, don't add derivative 
1587 c 
1588 c 
1589 do 850 igam=l,nregn4 
1590 ikeep=iregn4(igam) 
1591 850 if ((ikeep.eq.ia) .or. (ikeep.eq.ib) .or. (ikeep.eq.ic) .or. 
1592 # (ikeep.eq.id)) goto 860 
1593 c 
1594 c Only get here when none of ia,ib,ic,id is in Region 4 
1595 goto 870 
1596 c 
1597 860 continue 
1598 c 
1599 c Temporary Diagnostic 
1600c write(iout,*) 'called fd_opb2 ',ia,ib,ic,id 
1601 c   
1602 c 
1603 c 
1604 call fd_opbl (i4,ia,ib,ic,id,conout.constJconst2,imin) 
1605 iopbc=l 
1606 endif 
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1607 c   when mp=l (first angle) calculate derivates   
1608 c   for in-plane ic-ia-id and out-plane ia-ib-ia   
1609 c 
1610 870 continue 

1622 c   
1623 c gam2mm: If ia,ib,ic,id HOT in Region 4, don't add derivative 
1624 c 
1625 c 
1626 do 880 igam=l,nregn4 
1627 ikeep=iregn4(igam) 
1628 880     if ((ikeep.eq.ia) .or. (ikeep.eq.ib) .or. (ikeep.eq.ic) .or. 
1629 #     (ikeep.eq.id)) goto 881 
1630 c 
1631 c Only get here »hen none of ia,ib,ic,id is in Region 4 
1632 goto 885 
1633 c 
1634 881 continue 
1635 c 
1636 c Temporary Diagnostic 
1637c     srite(iout,*) 'called fd_opb3 ',ia,ib,ic,id 
1638 c 
1639 call fd_opb3 (i4,ia,ib,ic,id,conout,conin,angin,imin) 
1640 endif 
1641 endif 
1642 c 
1643 885 continue 
1644 c   

1650 c gam2mm: If ib or imvd or ic HOT in Region 4, don't add derivative 
1651 c 
1652 c 
1653 do 890 igam=l,nregn4 
1654 ikeep=iregn4(igam) 
1655 890     if ((ikeep.eq.imvd) .or. (ikeep.eq.ia) .or. (ikeep.eq.ic)) 
1656 #    goto 891 
1657 c 
1658 c Only get here when neither ib.imvd, nor ic in Region 4 
1659 goto 270 
1660 c 
1661 891 continue 

1761 c      end of stretch-bend derivatives 
1762 270 continue 

E.3.12    Module mvibSl.S.f subroutine fd.ebbnd . 

5671 C Hew COMMONS for merging with GAHESS  
5672 C 
5673 COMMON /FORCMM/ gradmm(750) 
5674 COMMON /NREGHS/ NREGN1, NRE6N2, NREGN3, NREGN4, NREGN5 
5675 COMMON /IREGNS/ IREGBK50) ,IREGN2(50) ,IREGN3(50) , 
5676 # IREGN4(500),IREGN5(250) 
5677 COMMON /MM2PAX/ XC0MM2, YC0MM2, ZC0BM2, XFPAM2 (3,3) 
5678 c 
5679 INTEGER NREGN1,NREGN2,NREGN3,NREGN4,NREGN5 
5680 INTEGER IREGN1,IREGN2,IREGN3,IREGN4,IREGN5 
5681 REAL*8 XC0HM2,YC0MM2,ZC0MM2,XFPAM2 
5682 C   

5685 c type-1 bend-bend (tiro angles with common center atom) 
5796 c      calculate de/dx,  etc      
5797 c 
5798 c gam2mm: If ia,ib(ie),ic,id,if NOT in Region 4, don't add derivative 
5799 c 
5800 c 
5801 do 800 igam=l,nregn4 
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5802 ikeep=iregn4(igam) 
5803 if ((ikeep.eq.ia) .or. (ikeep.eq.ib) .or. (ikeep.eq.ic).or. 
5804 f  (ikeep.eq.id) .or. (ikeep.eq.ie) .or. (ikeep.eq.if)) goto 810 
5805 800 continue 
5806 c 
5807 c Only get here when ia,ib,ic,id,ie,if BOT in Region 4 
5808 goto 80 
5809 c 
5810 810 continue 
5811 c 
5812 c Temporary Diagnostic 
5813 c    write(iout,*) >fd_ebbnd ia ib ic id ie if '.ia.ib.ic.id.ie.if 
5814 c   

5845   80  continue 

5898 c      calculate de/dx, etc   
5899 c 
5900 c gam2mm:  If ia.ib(ie),ic,id,if HOT in Region 4,  don't add derivative 
5901 c 
5902 c 
5903 do 820 igam=l,nregn4 
5904 ikeep=iregn4(igam) 
5905 if ((ikeep.eq.ia) .or. (ikeep.eq.ib) .or. (ikeep.eq.ic).or. 
5906 #  (ikeep.eq.id) .or. (ikeep.eq.ie) .or. (ikeep.eq.if)) goto 830 
5907 820 continue 
5908 c 
5909 c Only get here when ia,ib,ic,id,ie,if HOT in Region 4 
5910 goto 140 
5911 c 
5912 830 continue 

5947 140  continue 

E.3.13   Module mvib32.S.f subroutine fd^vdwbd . 

72 C Hew COMMONS for merging with GAMESS  
73 C 
74 COMMON /FORCMM/ gradmm(750) 
75 COMMOH /HREGHS/ HREGH1 ,HREGH2,HREGH3,HREGH4,HREGH5 
76 COMMOH /IREGHS/ IREGHK50) ,1REGH2(50) ,IREGH3(50) , 
77 # IREGH4(500),IREGH5(250) 
78 COMMOH /MM2PAX/ XC0HH2>YC0MM2,ZC0HM2,XFPAM2(3,3) 
79 c 
80 IHTEGER HREGH1 ,HREGH2,HREGH3,HREGH4,HREGH5 
81 IHTEGER IREGH1 ,IREGH2,IREGH3,IREGH4,IREGH5 
82 REAL*8 XC0MM2, YC0MM2, ZC0HM2 .XFPAM2 
83 C  

132 c  
133 c gam2mm   Add term IFF one of atoms is in Region 4 
134 C or if both atoms are in Region 3 
135 c 
136 ir4yes=0 
137 ir33yes=0 
138 do 805 igam=l,nregn4 
139 ikeep=iregn4(igam) 
140 805   if ((ikeep.eq.i) .or. (ikeep.eq.k)) ir4yes=l 
141 c 
142 do 806 igam=l,nregn3 
143 ikeep=iregn3(igam) 
144 806   if (ikeep.eq.i) ir33yes=l 
145 c 
146 if(ir33yes.eq.l) then 
147 do 807 igam=l,nregn3 
148 ikeep=iregn3(igam) 
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149 807 if (ikeep.eq.k) 
150 endif 
151 c 
152 if ((ir4yes.eq.l) . 
153 c write(iout,*) ' 
154 goto 810 
155 else 
156 goto 300 
157 endif 
158 810 continue 

ir33yes=2 

or. (ir33yes.eq.2)) then 
fd.vdwbd  i  k  ',i,k 

E.3.14    Module mvibS2. S.f subroutine fd-vdwod 

410 C Hew COHHOHS for merging with GAHESS  
411 C 
412 COHHOH /FORCHH/ gradmm(750) 
413 COHHOH /HREGHS/ HREGH1,HREGH2,HREGH3,HREGH4,NREGH5 
414 COHHOH /IREGHS/ IREGNK50) ,IREGH2(50) ,IREGH3(50) , 
415 # IREGH4(500),IREGH5(250) 
416 COHHOH /HH2PAX/ XC0HM2,YC0HH2,ZC0HH2,XFPAM2(3,3) 
417 c 
418 IHTEGER HREGH1,HREGH2,HREGH3,HREGH4,HREGH5 
419 IHTEGER IREGH1,IREGH2,IREGH3,IREGH4,IREGH5 
420 REAL*8 XC0HH2,YC0HH2,ZC0HH2,XFPAH2 
421 C 

475 c  
476 c gam2mm   Add term IFF one of atoms is in Region 4 
477 C or if both atoms are in Region 3 
478 c 
479 ir4yes=0 
480 ir33yes=0 
481 do 805 igam=l,nregn4 
482 ikeep=iregn4(igam) 
483 805   if ((ikeep.eq.i) .or. (ikeep.eq.j)) ir4yes=l 
484 c 
485 do 806 igam=l,nregn3 
486 ikeep=iregn3(igam) 
487 806   if (ikeep.eq.i) ir33yes=l 
488 c 
489 if(ir33yes.eq.l) then 
490 do 807 igam=l,nregn3 
491 ikeep=iregn3(igam) 
492 807 if (ikeep.eq.j) ir33yes=2 
493 endif 
494 c 
495 if ((ir4yes.eq.l) .or. (ir33yes.eq.2)) then 
496 c Temporary Diagnostic 
497 c write(iout,*) ' fd.vdwod  i  j   ' ,i,j 
498 goto 810 
499 else 
500 goto 300 
501 endif 
502 810 continue 

E.3.15    Module mvib32.S.f subroutine fd-chgchg 

838 C Hew COHHOHS for merging with GAHESS  
839 C 
840 COHHOH /FORCHH/ gradmm(750) 
841 COHMON /HREGNS/ HREGH1,HREGH2,NREGN3,NREGH4,HREGI5 
842 COHHOH /IREGHS/ IREGHK50) ,IREGH2(50) ,IREGH3(50) , 
843 # IREGH4(500),IREGH5(250) 
844 COHHOH /HH2PAX/ XC0HH2,YC0HH2,ZC0HH2,XFPAH2(3J3) 
845 c 
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846 INTEGER HREGH1 ,1IREGN2,HREGN3,NREGH4,HREGN5 
847 IHTEGER IREGH1,IREGN2,IREGH3,IREGH4,IREGH5 
848 REAL*8 XC0HH2,YC0MH2,ZC0HH2,XFPAH2 
849 C  

882 c  
883 c gam2mm   Add term IFF one of atoms is in Region 4 
884 C or if both atoms are in Region 3 
885 c 
886 ir4yes=0 
887 ir33yes=0 
888 do 805 igam=l,nregn4 
889 ikeep=iregn4(igam) 
890 805   if ((ikeep.eq.i) .or. (ikeep.eq.k)) ir4yes=l 
891 c 
892 do 806 igam=l,nregn3 
893 ikeep=iregn3(igam) 
894 806   if (ikeep.eq.i) ir33yes=l 
895 c 
896 if(ir33yes.eq.l) then 
897 do 807 igam=l,nregn3 
898 ikeep=iregn3(igam) 
899 807    if (ikeep.eq.k) ir33yes=2 
900 endif 
901 c 
902 if ((ir4yes.eq.l) .or. (ir33yes.eq.2)) then 
903 write(iout,*) '  fd_chgchg  i  j  '.i.j 
904 goto 810 
905 else 
906 goto 300 
907 endif 
908 c 
909 810 continue 
910 c  

E.3.16    Module mvib32.S.f subroutine fd-dipole . 

998 c  
999 c 
1000 C Hew COHMONS for merging with GAHESS  
1001 C 
1002 COHHOH /FORCHH/ gradmm(750) 
1003 COHHOH /HREGHS/ HREGH1 ,HREGH2,HREGH3,HREGH4,HREGH5 
1004 COHHOH /IREGNS/ IREGH1(50),IREGH2(50),IREGH3(50), 
1005 # IREGH4(500),IREGH5(250) 
1006 COHHOH /HH2PAX/ XC0HH2,YC0HH2,ZC0HH2,XFPAH2(3)3) 
1007 c 
1008 IHTEGER HREGH1,HREGH2,HREGH3,HREGH4,HREGH5 
1009 IHTEGER IREGH1,IREGH2,IREGH3,IREGH4,IREGH5 
1010 REAL*8 XC0HH2,YC0MH2,ZC0HH2,XFPAH2 
1011 C   

1042 c   
1043 c gam2mm: If one of i,j,imvd,idip HOT in Region 4, skip 
1044 c 
1045 c 
1046 do 800 igam=l,nregn4 
1047 ikeep=iregn4(igam) 
1048 if ((ikeep.eq.i) .or. (ikeep.eq.j) .or. (ikeep.eq.imvd) .or. 
1049 # (idip.eq.ikeep)) goto 810 
1050 800 continue 
1051 c 
1052 c Only get here »hen none of above are in Region 4 
1053 goto 10 
1054 c 
1055 810 continue 
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1596 10 continue 

E.3.17   Module mvib32.S.f subroutine fd.chgdip 

1626 C Hew COMMONS for merging with GAMESS  
1627 C 
1628 COMMON /FORCMM/ gradmm(750) 
1629 COMMON /NREGNS/ NREGN1 ,NREGN2,NREGN3,NREGN4,NREGN5 
1630 COMMON /IREGNS/ IREGNK50) ,IREGN2(50) ,IREGN3(50) , 
1631 # IREGN4(500),IREGN5(250) 
1632 COMMON /MM2PAX/ XC0MM2,YC0HM2,ZC0MM2,XFPAM2(3,3) 
1633 c 
1634 INTEGER NREGN1,NREGN2,NREGN3,NREGN4,NREGN5 
1635 INTEGER IREGN1 ,IREGN2,IREGN3,IREGN4>IREGN5 
1636 REAL*8 XC0MM2,YC0MM2,ZC0MM2,XFPAM2 

1637 C   

1667 c gam2mm: If i,j, or imvd NOT in Region 4, don't add derivative 
1668 c 
1669 c 
1670 do 800 igam=l,nregn4 
1671 ikeep=iregn4(igam) 
1672 if ((ikeep.eq.i) .or. (ikeep.eq.j) .or. (ikeep.eq.imvd)) 
1673 # goto 810 
1674 800 continue 
1675 c 
1676 c Only get here when neither i,j, AND imvd NOT in Region 4 
1677 goto 100 
1678 c 
1679 810 continue 

1887 100 continue 

E.3.18   Module mvib32.S.f subroutine fd-dipchg. 

1916 C New COMMONS for merging with GAMESS  
1917 C 
1918 COMMON /FORCMM/ gradmm(750) 
1919 COMMON /NREGNS/ NREGN1 ,NREGN2,NREGN3,NREGN4,NREGN5 
1920 COMMON /IREGNS/ IREGNK50) ,IREGN2(50) ,IREGN3(50) , 
1921 # IREGN4(500),IREGN5(250) 
1922 COMMON /MM2PAX/ XC0MM2,YC0HM2,ZC0MM2,XFPAH2(3,3) 
1923 c 
1924 INTEGER NREGN1 JNREGN2,NREGN3,NREGN4,NREGN5 
1925 INTEGER IREGN1, IREGN2, IREGN3, IREGN4, IREGN5 
1926 REAL*8 XC0MM2,YC0MM2,ZC0MM2,XFPAM2 

1977 c   
1978 c gam2mm: If i,j, or imvd NOT in Region 4, don't add derivative 
1979 c 
1980 c 
1981 do 800 igam=l,nregn4 
1982 ikeep=iregn4(igam) 
1983 if ((ikeep.eq.i) .or. (ikeep.eq.j) .or. (ikeep.eq.imvd)) 
1984 f goto 810 
1985 800 continue 
1986 c 
1987 c Only get here when neither i,j, AND imvd NOT in Region 4 
1988 goto 100 
1989 c 
1990 810 continue 

2228 100 continue 

E.3.19    Module mvib32.S.f subroutine fd.etors. 
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2271 C 
2272 C 
2273 COMMON /FORCMM/ gradmm(750) 
2274 COMMON /NREGNS/ NREGN1,NREGN2,NREGN3,NREGN4,NREGN5 

2275 COMMON /IREGNS/ IREGNK50) ,IREGN2(50) ,IREGN3(50) , 

2276 #                                     IREGN4(500),IREGN5(250) 

2277 COMMON /MM2PAX/ XC0MM2,YC0MM2,ZC0MM2,XFPAM2(3,3) 

2278 c 
2279 INTEGER NREGN1,NREGN2,NREGN3,NREGN4,NREGN5 
2280 INTEGER IREGN1,IREGN2,IREGN3,IREGN4,IREGN5 

2281 REAL*8 XC0MM2)YC0MM2,ZC0MM2,XFPAM2 
ZZoZ  L 

2287 c type-1 torsion    imvd-n2-n3-n4 

2536 c gam2mm:  If imvd,n2,n3, or n4 in Region 4,   add term 
2537 c 
2538 c 
2539 do 800 igam=l,nregn4 

2540 ikeep=iregn4(igam) 
2541 if  ((ikeep.eq.imvd)   .or.   (ikeep.eq.n2)   .or.   (ikeep.eq.n3).or. 

2542 #         (ikeep.eq.n4) )  goto 810 
2543 800 continue 
2544 c 
2545 c Only get here when none of imvd,n2,n3,n4 in Region 4 
2546 goto 150 
2547 c 
2548 810 continue 

2594 150        continue 

2623 c type-2 torsion    nl-imvd-n3-n4 

2873 c gam2mm:  If nl,imvd,n3, or n4 in Region 4,   add term 
2874 c 
2875 c 
2876 do 820 igam=l,nregn4 
2877 ikeep=iregn4(igam) 
2878 if  ((ikeep.eq.nl)   .or.   (ikeep.eq.imvd)   .or.   (ikeep.eq.n3).or. 
2879 #         (ikeep.eq.n4)  )  goto 830 
2880 820 continue 
2881 c 
2882 c Only get here when none of imvd,n2,n3,n4 in Region 4 
2883 goto 350 
2884 c 
2885 830 continue 
2886 c 
2954 350        continue 

E-4    New Modules:ghmm2.f 

This is the interface module between GAMESS and MM3 

E.5    Resolution of GAMESS-MM3 Name Conflicts 
RESOLUTION OB NAHE CONFLICTS BETWEEN MM3 AND GAMESS 

-  COMMON/ATOM/ USED BY BOTH 

-  RENAMED MM3 COMMON BLOCK TO C0MM0N/ATMM3/ 

mm31.f:27 COMMON/ATMM3/N,X (MAX ATOM) ,Y(MAXATOM) ,Z(MAXATOM) , ITYPE (MAXATOM) , 

mm31.f:350:       C0MM0N/ATMM3/N,X(MAXATOM) , Y(MAXATOM) ,Z(MAXATOM) ,ITYPE(MAXATOM) , 
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mm31 

mm31 

mm31 

mm31 

mm31 

HHQ31 

mm31 

mm31 

mm31 

nna31 

mm31 

mm31 

mm31 
mm31 

mm31 

mm31 

mm31 

mni32 

mm32 

mm32 

mm32 

mm32 

mm32 

mni32 

mm32 
mni32 

DQIL32 

nnn32 

nnn32 

nnn32 

DOHI32 

nmi32 

mni33 

mm33 

nim33 

nnn33 

mm33 

mm33 

nn&33 
mm33 

nnn33 

nnn33 

mm33 

nnn33 

iuiu33 

mm33 

nmi33 

min33 

nint33 

nnii33 

mm33 

mm33 

nnn33. 

mm33. 

mm33. 

mm33. 

mm33. 

mm33 

mm34 

mm34. 

mm34. 

mm34 

mm34 
mm34 

mm34 

mm34 

mm34 
mm34 

.f:1123 

.f:1290 

.f:1695 

.f:1730 

.f:1839 

.f:2000 

.1:2053 

.f:2211 

.f:2258 

.f:2277 

.f:4286 

.f:4429 

.f:4640 

.f:4709 

.i:5330 

.f:5382 

.f:5495 

.f:14: 

.f:300 

.f:474 

.1:S50 

.f:591 

.f:1103 

.f:1785 

.f:2275 

.f :2622 

.f:3129 

.f :3289 

.f:3573 

.f :3615 

.f:3707 

.f:4662 

.f:14: 

.f:379 

.f:444 

.f:654 

.f:994 

.f :1326 

.f:1421 

.f:1532 

.f:1639 

.f:1772 

.f:1939 

.f:2212 

.f:2366 

.f :2555 

.f :3152 

.f :3378 

.f :3485 

.f :3586 

.f :3670 

.f:3722 

f:3881 

f:3908 

f:4012 

f:4652 

f:4693 

f:4717 

1:7: 
i :171 
f :295 

f :401 

f :480 

f :665 

f :739 

f :840 

f:1107: 

f:1258: 

C0MM0N/ATMM3/N,X(MAXATOM),Y(HAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMH3/N.X(MAXATOM),Y(MAXATOH),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N.X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) ,ITYPE(MAXATOM) , 

COMMON/ATMM3/N,X(MAXATOM) ,Y(MAXATOM) .Z(MAXATOM) ,ITYPE(MAXATOM) , 

COMMOH/ATMM3/If ,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) ,ITYPE(MAXATOM) , 

COMMON/ATMM3/H,X(HAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N.X (MAXATOM) ,Y (MAXATOM) ,Z(MAXATOM) , ITYPE (MAXATOM) , 

COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

C0HM0N/ATMM3/N,X(MAXAT0M),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

C0MM0N/ATMM3/NAT0M,X(MAXAT0M) ,Y(MAXATOM) ,Z(MAXATOM) , 

C0MM0N/ATMM3/NAT0M,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , 

COHMON/ATMM3/N,X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

C0MM0N/ATMM3/N,X(MAXATOM) , Y(MAXATOM) ,Z(MAXATOM) ,ITYPE(MAXATOM) , 

COMMON/ATMM3/N.X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , ITYPE (MAX ATOM) , 

COMMON/ATMM3/N.X(MAXATOM),Y(HAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N.X(MAXATOM),Y(HAXATOM),Z(HAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/NATOM,X(MAXATOM),Y(MAXATOM),Z(MAXATOM), 

COMMON/ATMM3/N,X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/NATOM,X(MAXATOM),Y(MAXATOM),Z(MAXATOM), 

COMMON/ATMM3/N.X(MAXATOM),Y(HAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMH3/NATOH,X(MAXATOM) ,Y(MAXATOH) ,Z(MAXATOH) , 
COMMON/ATMM3/NATOM,X(MAXATOM) ,Y(HAXATOM) ,Z(MAXATOM) , 

COMMON/ATMM3/NAT0M,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , 

COMMON/ATMH3/NATOH,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , 
COMMON/ATHM3/HATOH,X(MAXATOM) ,Y(HAXATOM) ,Z(MAXATOM) , 

C0MM0N/ATMM3/NT0TAL,X(HAXAT0H) ,Y(MAXATOM) ,Z(MAXATOM) , 

COMMON/ATMH3/NTOTAL,X(MAXATOM) ,Y(MAXATOM),Z(MAXATOM) , 

COHHON/ATHH3/NTOTAL,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOH) , 
COMMON/ATMM3/NTOTAL,X(MAXATOM),Y(MAXATOM),Z(MAXATOM), 

COMMON/ATMH3/NT0TAL ,X (MAXATOM) ,Y (MAXATOM) ,Z (MAXATOM) , 

COMMON/ATHH3/NTOTAL,X(MAXATOH) , Y(MAXATOM) ,Z(MAXATOM) , 
COMMON/ATHM3/N.X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , IT YPE (MAXATOM) , 

C0MM0N/ATMM3/NAT0H.X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOH) , 

C0MM0N/ATHM3/NAT0H,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , 

C0MM0N/ATHH3/NAT0M,X(MAXATOM) ,Y(MAXATOM) ,Z(HAXATOM) , 
COMMON/ATHM3/N.X(MAXATOM) , Y (MAXATOM) ,Z (MAXATOM) ,ITYPE(MAXATOM) , 

COMMON/ATMM3/N.X(MAXATOM) , Y (MAXATOM) ,2 (MAXATOM) , ITYPE (MAX ATOM) , 

COMMON/ATMM3/N.X(MAXATOM) , Y (MAXATOM) ,Z (MAXATOM) , ITYPE (MAXATOM) , 
COMMON/ATMH3/N,X (MAX ATOM) ,Y (MAXATOM) ,Z(MAXATOM) , ITYPE (MAXATOM) , 

COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOH),ITYPE(MAXATOM), 

COMMON/ATMM3/N,X(MAXATOM) ,Y(HAXATOM) ,Z(HAXATOM) ,ITYPE(MAXATOM) , 

COMMON/ATHM3/N,X(MAXATOM),Y(HAXATOM),Z(MAXATOH),ITYPE(MAXATOM), 

COMMON/ATMM3/NATOH.X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , 

COMMON/ATMM3/N,X (MAXATOM) ,Y(MAXATDM) ,Z(MAXATOM) , ITYPE (MAXATOM) , 

COMMON/ATMM3/NAT0M,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , 

COMMON/ATMM3/N.X (MAX ATOM) ,Y(MAXATOM) ,Z(MAXATOM) , IT YPE (MAXATOM) , 

COMMON/ATHM3/NATOHS.X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOH) , 
COMMON/ATMM3/NATOMS,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , 

COMMON/ATMM3/NAT0M,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOH) , 

COMMON/ATHM3/NATOM,X(MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , 

COMMON/ATMM3/N.X (MAXATOM) ,Y(MAXATOM) ,Z(MAXATOM) , ITYPE (MAXATOM) , 

COMMON/ATMH3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/NAT0M,X(MAXATOM) ,Y(HAXATOM) ,Z(MAXATOM) , 

COMMON/ATMM3/N,X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N,X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/NATOM,X(MAXATOM),Y(MAXATOM),Z(MAXATOM), 
COMMON/ATMM3/N,X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N,X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N,X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/NAT0M,X(MAXAT0M) ,Y(MAXATOM) ,Z(MAXATOM) , 

COMMON/ATMH3/N,X(MAXATOH),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMH3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 

C0MM0N/ATMM3/N,X(MAXAT0M),Y(MAXATOM),Z(MAXATOM),ITYPE(MAXATOM), 
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mm34.f 
mm35.f 
mm35.f 
mm35.f 
mm35.f 
mm35.£ 
mm36.f 
mm36.f 
mm36.i 
mm36.f 
mm36. f 
mvib31 
mvib31 
mvib31 
mvib31 
mvib31 
mvib31 
mvib31 
mvib31 
mvib31 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32 
mvib32. 
mvib32. 
mvib32. 
mvib32. 
mvib32, 
mvib32. 
mvib32. 
mvib32 

1402 
15: 
1337 
2840 
2971 
2996 
22: 
969: 
1006 
2406 
2716 
f :33 
f:643: 
f:796: 
f:900: 
f:1380 
f:1854 
f:3040 
f:400S 
f:5222 
f :14: 
f:303: 
f:696: 
f:817: 
f:1407 
f:1663 
f:1974 
f:2679 
f:3358 
f:3641 
f:4096 
f:4936 
f:5486 
f:5627 
f:5785 
f:5972 
f:6202 
f:6264 
f:6327 
f:6481 
f:6893 

C0MM0N/ATMM3/N.X(MAXATOM),Y(MAXAT0M),Z(MAXAT0M),ITYPE 
COMMON/ATMM3/N.X(MAXATOM),Y(HAXAT0H),Z(HAXAT0H),ITYPE 
COMMON/ATMM3/H.X (MAX ATOM),Y(HAXAT0H),Z(HAXAT0M),ITYPE 
COMMON/ATMM3/N.X (MAX ATOM),Y(MAXATOM),Z(MAXATOM),ITYPE 
COHH0N/ATHH3/H,X(HAXATOH),Y(HAXATOM),Z(MAXATOM),ITYPE 
C0MM0N/ATMM3/N,X(MAXAT0M),Y(MAXATOH),Z(MAXATOM),ITYPE 
COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE 
C0MM0N/ATMM3/N,X(MAXAT0M) ,Y(MAXATOM) ,Z(MAXATOM) ,ITYPE 
COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE 
COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE 
COMMON/ATMM3/N.X(MAXATOM),Y(MAXATOM),Z(MAXATOM),ITYPE 

(MAXATOM) , 
(MAXATOM), 
(MAXATOM), 
(MAXATOM), 
(MAXATOM), 
(MAXATOM), 
(MAXATOM), 
(MAXATOM), 
(MAXATOM), 
(MAXATOM), 
(MAXATOM), 

COMMON/ATMM3/natom 
COMMON/ATMM3/natom 
COMMON/ATMM3/nat om 
COMMON/ATMM3/natom 
:COMMON/ATMM3/natom 
:COMMON/ATMM3/natom 
:COMMON/ATMM3/natom 
:COMMON/ATMM3/natom 
:C0MM0N/ATMM3/natom 
C0HM0N/ATMM3/natom 
C0MM0N/ATHM3/natom 
C0MM0N/ATHM3/natom 
C0MM0N/ATHM3/natom 
:C0MM0N/ATMM3/natom 
:C0MM0N/ATMH3/natom 
:C0MH0N/ATMM3/natom 
:C0MH0N/ATMM3/natom 
:COMMON/ATHM3/natom 
:COMMON/ATMM3/natom 
:COMMON/ATMM3/natom 
:COMMON/ATMM3/natom 
:COMMON/ATMM3/natom 
:COMMON/ATMM3/natom 
:C0MM0N/ATMM3/natom 
:COMMON/ATMM3/natom 
: C0MM0N/ATMH3/natom 
: C0MM0B/ATMM3/natom 
:C0MM0N/ATMM3/natom 
:C0MM0N/ATMM3/natom 

,i(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatoni 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,x(maxatom 
,i(maxatom 
,x(maxatom 
,x(maxatom 

),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
),y(maxatom) 
;) ,y(maxatom) 
),y(maxatom) 
) ,y(maxatom) 
),y(maxatom) 
),y(maxatom) 
.) ,y(maxatom) 
),y(maxatom) 
.) ,y(maxatom) 

,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 
,z(maxatom) 

C0MM0N/ATMM3/natom,x(maxatom),y(maxatom),z(maxatom), 

COMMON/TRANS/ USED BOTH BY GAHESS AND HH3 

- RENAMED MH3 COMMON BLOCK TO C0MM0N/TRMM3/ 

mm31.f: 
mm31.f: 
mm31.f: 
mm32.f: 
mm32.f: 
mm33.f: 
mm33.f: 
mm34.f: 

366: 
1130 
1305 
3133 
3295 
2370 
2561 
966: 

C0HM0N/TRMH3/NR0T,XI,YI,ZI.IFINDP 
C0MM0N/TRMM3/NR0T,XI,YI,ZI,IFINDP 
C0MM0N/TRMM3/NR0T,XI,YI,ZI,IFINDP 
C0MMON/TRMM3/HROT,XI,YI,ZI,IFINDP 
C0MM0N/TRMM3/NR0T,XI,YI.ZI,IFINDP 
C0MMON/TRMM3/NROT,XI,YI,ZI,IFINDP 
C0MM0N/TRMM3/NR0T,XI,YI,ZI,IFINDP 

C0MM0N/TRMM3/NR0T,XI,YI,ZI.IFINDP 

COMMON    PICON USED IB GAMESS 
SUBROUTINE PICON USED IN MM3 

- RENAMED MM3 SUBROUTINE PICON TO PIMM3 

mm31.f:862: 
mm31.f:1172 
mm31.f:1206 
mm31.f:1262 
mm31.f :1453 

IF (NORB.NE.O) CALL PIMM3 
CALL PIMM3 

CALL PIMM3 
CALL PIMM3 

IF(NORB.DE.O) CALL PIMM3 
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mm34.f:731:     SUBROUTINE PIMH3 

mm35.f:2320:C PI-MODIFICATIONS IN PIHH3. 

mm35.f:2378:C — PI-MODIFICATIONS IN PIMM3. 

mm35.f:2438:C — PI-MODIFICATIONS IN PIMM3. 

mm35.f:2500:C — PI-MODIFICATIONS IN PIMM3 (5-BEMBERED RING). 

SUBROUTINE ROTAT USED IN GAMESS 

SUBROUTINE ROTAT ALSO USED IN MM3 

- RENAMED MM3 SUBROUTINE TO ROMM3 (5 LETTERS LONG LIKE ORIGINAL) 

mm34.f:340:     CALL ROHM3 (LIST,XR,YR,ZR,X,Y,Z) 

mm34.f:1201:     SUBROUTINE ROMM3 (LIST,XR,YR,ZR,X,Y,Z) 

SUBROUTINE ROTATE USED IN GAMESS 

SUBROUTINE ROTATE ALSO USED IN HM3 

- RENAMED MM3 SUBROUTINE TO ROTMM3 

mm31 

nnn31 

mm31 

mm31 

mm31 

SU&31 

mm31 

mm31 

imu33 

mm33 

.f:4827 

.f:4842 

.f:4849 

.f:4871 

.f:4892 

.f:4907 

.f:4940 

.f:4947 

.f:3319 

.f:3867 

IF (ICODE.EQ.l) CALL R0THM3(1,90.0,HROT) 

IF (ICODE.EQ.l) CALL R0TMM3(1,-90.0,NROT) 

IF (ICODE.EQ.l) CALL R0THM3(1,180.O.NROT) 

IF (ICODE.EQ.l) CALL R0THM3(1,-180.0,NROT) 

IF (ICODE.EQ.l) CALL R0THM3(1.90.0.NR0T) 

IF (ICODE.EQ.l) CALL R0THM3(1,-90.0,NROT) 

IF (ICODE.EQ.l) CALL ROTHM3(1,90.0,NROT) 

IF (ICODE.EQ.l) CALL ROTMM3(1,-90.0,NROT) 

CALL R0TMM3(AXIS)ANGLE,NR0T) 

SUBROUTINE R0TMM3(AXIS,ANGLE,NROT) 
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